This study evaluated measures for making comparisons of errors across time series. We analyzed 90 annual and 101 quarterly economic time series. We judged error measures on reliability, construct validity, sensitivity to small changes, protection against outliers, and their relationship to decision making. The results lead us to recommend the Geometric Mean of the Relative Absolute Error (GMRAE) when the task involves calibrating a model for a set of time series. The GMRAE compares the absolute error of a given method to that from the random walk forecast. For selecting the most accurate methods, we recommend the Median RAE (MdRAE)when few series are available and the Median Absolute Percentage Error (MdAPE) otherwise. The Root Mean Square Error (RMSE) is not reliable, and is therefore inappropriate for comparing accuracy across series.
This paper examines the feasibility of rule-based forecasting, a procedure that applies forecasting expertise and domain knowledge to produce forecasts according to features of the data. We developed a rule base to make annual extrapolation forecasts for economic and demographic time series. The development of the rule base drew upon protocol analyses of five experts on forecasting methods. This rule base, consisting of 99 rules, combined forecasts from four extrapolation methods (the random walk, regression, Brown's linear exponential smoothing, and Holt's exponential smoothing) according to rules using 18 features of time series. For one-year ahead ex ante forecasts of 90 annual series, the median absolute percentage error (MdAPE) for rule-based forecasting was 13% less than that from equally-weighted combined forecasts. For six-year ahead ex ante forecasts, rule-based forecasting had a MdAPE that was 42% less. The improvement in accuracy of the rule-based forecasts over equally-weighted combined forecasts was statistically significant. Rule-based forecasting was more accurate than equal-weights combining in situations involving significant trends, low uncertainty, stability, and good domain expertise. This paper examines the feasibility of rule -based forecasting, a procedure that applies forecasting expertise and domain knowledge to produce forecasts according to features of the data. We developed a rule base to make annual extrapolation forecasts for economic and demographic time series. The development of the rule base drew upon protocol analyses of five experts on forecasting methods. This rule base, consisting of 99 rules, combined forecasts from four extrapolation methods (the random walk, regression, Brown's linear exponential smoothing, and Holt's exponential smoothing) according to rules using 18 features of time series. For one-year ahead ex ante forecasts of 90 annual series, the median absolute percentage error (MdAPE) for rule-based forecasting was 13% less than that from equally-weighted combined forecasts. For six-year ahead ex ante forecasts, rule-based forecasting had a MdAPE that was 42% less. The improvement in accuracy of the rule -based forecasts over equally-weighted combined forecasts was statistically significant. Rule-based forecasting was more accurate than equal-weights combining in situations involving significant trends, low uncertainty, stability, and good domain expertise.
This study evaluated measures for making comparisons of errors across time series. We analyzed 90 annual and 101 quarterly economic time series. We judged error measures on reliability, construct validity, sensitivity to small changes, protection against outliers, and their relationship to decision making. The results lead us to recommend the Geometric Mean of the Relative Absolute Error (GMRAE) when the task involves calibrating a model for a set of time series. The GMRAE compares the absolute error of a given method to that from the random walk forecast. For selecting the most accurate methods, we recommend the Median RAE (MdRAE)when few series are available and the Median Absolute Percentage Error (MdAPE) otherwise. The Root Mean Square Error (RMSE) is not reliable, and is therefore inappropriate for comparing accuracy across series.
We examine how competitor-oriented objectives and the availability of competitor oriented information can affect managerial decisions and the profitability of firms. Using a variety of evidence collected over nine years, we compare the long-term profitability of competitor-oriented and self-oriented objectives. Disciplines Marketing CommentsPostprint version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.