The production of cytokine mRNAs, in addition to viral DNA, was quantified by real-time quantitative reverse transcription-PCR (RT-PCR) (cytokines) or PCR (virus) in splenocytes during the course of Marek's disease virus (MDV) infection in four inbred chicken lines: two resistant (lines 6 1 and N) and two susceptible (lines 7 2 and P). Virus loads were only different after 10 days postinfection (dpi), increasing in susceptible lines and decreasing in resistant lines. Gamma interferon (IFN-␥) mRNA was expressed by splenocytes from all infected birds between 3 and 10 dpi, associated with increasing MDV loads. For other cytokines, differences between lines were only seen for interleukin-6 (IL-6) and IL-18, with splenocytes from susceptible birds expressing high levels of both transcripts during the cytolytic phase of infection, whereas splenocytes from resistant birds expressed neither transcript. These results indicate that these two cytokines could play a crucial role in driving immune responses, which in resistant lines maintain MDV latency but in susceptible lines result in lymphomas.
Little is understood about the immune responses involved in the pathogenesis of infectious bursal disease virus (IBDV). Strains of IBDV differ in their virulence: F52/70 is a classical virulent strain (vIBDV), whereas UK661 is a very virulent strain (vvIBDV) that causes greater pathology and earlier mortality. The exact causes of clinical disease and death are still unclear. Pro-inflammatory cytokines such as interleukin (IL)-1beta and IL-6, produced by activated macrophages, could play a role, as could cytokines produced by T and natural killer (NK) cells, such as interferon (IFN)-gamma, which stimulate macrophages. We quantified mRNA transcription in bursal tissue, by real-time quantitative reverse transcription- polymerase chain reaction (RT-PCR), for the type I IFN (IFN-alpha and IFN-beta), pro-inflammatory cytokines (IL-1beta, IL-6, and CXCLi2), the anti-inflammatory cytokine transforming growth factor (TGF)-beta4, and Th1 cytokines (IFN-gamma, IL-2 [and the closely related IL-15], IL-12, and IL-18) for the first 5 days after infection of 3-week-old chickens with F52/70 or UK661 and compared these with levels in bursal tissue from uninfected age-matched controls. Both strains induced a pro-inflammatory response, evidenced by increased mRNA transcription of IL-1beta, IL-6, and CXCLi2, and down-regulation of TGF-beta4, of similar magnitude and timing. IFN-gamma mRNA was induced by both strains, although to a greater degree by the vvIBDV strain, indicating that a cell-mediated response is induced. Neither virus initially induced high levels of type I IFN. F52/70 seems to use a "stealth" approach by not inducing the type I IFNs, whereas UK661 down-regulates their expression. This suggests that both viruses modulate the host immune response, although probably by using different mechanisms.
Marek's disease (MD) is an economically important neoplastic disease of poultry. MD almost devastated the poultry industry in the 1960s but the disease was brought under control after Marek's disease herpesvirus (MDV) was identified and vaccines were developed. This is the first effective use of an antiviral vaccination to prevent a naturally occurring cancer in any species. MDV infection has many effects. Initially causing a cytolytic infection in B-lymphocytes, MDV infects activated T-lymphocytes where it becomes latent. In susceptible chicken genotypes MDV transforms CD4+ lymphocytes, causing visceral lymphomas and/or neural lesions and paralysis. Fully productive infection and shedding of infectious virus only occurs in the feather-follicle epithelium. Vaccination of newly-hatched chicks with live vaccines has been widely used to successfully control MD since the early 1970s. However, vaccinated chickens still become infected and shed MDV. Vaccine breaks have occurred with regularity and there is evidence that the use of MD vaccines could be driving MDV to greater virulence. MD continues to be a threat and a number of strategies have been adopted such as the use of more potent vaccines and vaccination of the embryonic stage to provide earlier protection. Recombinant MD vaccines are useful vectors and are being exploited to carry both viral and host genes to enhance protective immune responses. The future aim must be to develop a sustainable vaccine strategy that does not drive MDV to increased virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.