Fast Radio Bursts (FRBs), are millisecond radio signals that exhibit dispersion larger than what the Galactic electron density can account for. We have conducted a 1446 hour survey for Fast Radio Bursts (FRBs) at 145 MHz, covering a total of 4193 sq. deg on the sky. We used the UK station of the LOFAR radio telescope -the Rawlings Array -, accompanied for a majority of the time by the LOFAR station at Nançay, observing the same fields at the same frequency. Our real-time search backend, ARTEMIS, utilizes graphics processing units to search for pulses with dispersion measures up to 320 cm −3 pc. Previous derived FRB rates from surveys around 1.4 GHz, and favoured FRB interpretations, motivated this survey, despite all previous detections occurring at higher dispersion measures. We detected no new FRBs above a signal-to-noise threshold of 10, leading to the most stringent upper limit yet on the FRB event rate at these frequencies: 29 sky −1 day −1 for 5 ms-duration pulses above 62 Jy. The non-detection could be due to scatter-broadening, limitations on the volume and time searched, or the shape of FRB flux density spectra. Assuming the latter and that FRBs are standard candles, the non-detection is compatible with the published FRB sky rate, if their spectra follow a power law with frequency (∝ ν α ), with α +0.1, demonstrating a marked difference from pulsar spectra. Our results suggest that surveys at higher frequencies, including the low frequency component of the Square Kilometre Array, will have better chances to detect, estimate rates and understand the origin and properties of FRBs.
The removal of the Galactic and extragalactic foregrounds remains a major challenge for those wishing to make a detection of the Epoch of Reionization 21-cm signal. Multiple methods of modelling these foregrounds with varying levels of assumption have been trialled and shown promising recoveries on simulated data. Recently however there has been increased discussion of using the expected shape of the foregrounds in Fourier space to define an EoR window free of foreground contamination. By carrying out analysis within this window only, one can avoid the foregrounds and any statistical bias they might introduce by instead removing these foregrounds. In this paper we discuss the advantages and disadvantages of both foreground removal and foreground avoidance. We create a series of simulations with noise levels in line with both current and future experiments and compare the recovered statistical cosmological signal from foreground avoidance and a simplified, frequency independent foreground removal model. We find that while, for current generation experiments, foreground avoidance enables a better recovery at k perp > 0.6Mpc −1 , foreground removal is able to recover significantly more signal at small k los for both current and future experiments. We also relax the assumption that the foregrounds are smooth by introducing a Gaussian random factor along the line-of-sight and then also spatially. We find that both methods perform well for foreground models with line-of-sight and spatial variations around 0.1% however at levels larger than this foreground removal shows a greater signal recovery.
In this paper, the first in a series, we present an overview of new Hubble Space Telescope (HST) imaging polarimetry of six nearby radio galaxies (3C 15, 3C 66B, 3C 78, 3C 264, 3C 346, and 3C 371) with optical jets. These observations triple the number of extragalactic jets with subarcsecond-resolution optical polarimetry. We discuss the polarization characteristics of each jet and, as our Stokes I images also represent by far the deepest optical images yet obtained of each of these jets, we also discuss the morphology in total flux of each jet in detail. We find evidence of high optical polarization, averaging 20%, but reaching upwards of ∼ 50% in some objects, confirming that the optical emission is synchrotron, and that the components of the magnetic fields perpendicular to the line of sight are well ordered. We find a wide range of polarization morphologies, with each jet having a somewhat different relationship between total intensity and polarized flux and the polarization position angle. We find two trends in all of these jets. First, jet "edges" are very often associated with high fractional optical polarizations, as also found in earlier radio observations of these and other radio jets. In these regions, the magnetic field vectors appear to track the jet direction, even at bends, where we see particularly high fractional polarizations. This indicates a strong link between the local magnetic field and jet dynamics. Second, optical flux maximum regions are usually well separated from maxima in fractional polarization and often are associated with polarization minima. This trend is not found in radio data and was found in our optical polarimetry of M87 with HST. However, unlike in M87, we do not find a general trend for near-90 • rotations in the optical polarization vectors near flux maxima. We discuss possibilities for interpreting these trends, as well as implications for jet dynamics, magnetic field structure and particle acceleration.
The identification, and subsequent discovery, of fast radio transients through blind-search surveys requires a large amount of processing power, in worst cases scaling as $\mathcal{O}(N^3)$. For this reason, survey data are generally processed offline, using high-performance computing architectures or hardware-based designs. In recent years, graphics processing units have been extensively used for numerical analysis and scientific simulations, especially after the introduction of new high-level application programming interfaces. Here we show how GPUs can be used for fast transient discovery in real-time. We present a solution to the problem of de-dispersion, providing performance comparisons with a typical computing machine and traditional pulsar processing software. We describe the architecture of a real-time, GPU-based transient search machine. In terms of performance, our GPU solution provides a speed-up factor of between 50 and 200, depending on the parameters of the search.Comment: Accepted for publication (2011 July 12): Monthly Notices of the Royal Astronomical Society, 10 pages, 9 figures and 6 table
We present a comprehensive multiband spectral and polarimetric study of the jet of 3C 264 (NGC 3862). Included in this study are three HST optical and ultraviolet polarimetry data sets, along with new and archival VLA radio imaging and polarimetry, a re-analysis of numerous HST broadband data sets from the near infrared to the far ultraviolet, and a Chandra ACIS-S observation. We investigate similarities and differences between optical and radio polarimetry, in both degree of polarization and projected magnetic field direction. We also examine the broadband spectral energy distribution of both the nucleus and jet of 3C 264, from the radio through the X-rays. From this we place constraints on the physics of the 3C 264 system, the jet and its dynamics. We find significant curvature of the spectrum from the near-IR to ultraviolet, and synchrotron breaks steeper than 0.5, a situation also encountered in the jet of M87. This likely indicates velocity and/or magnetic field gradients and more efficient particle acceleration localized in the faster/higher magnetic field parts of the flow. The magnetic field structure of the 3C 264 jet is remarkably smooth; however, we do find complex magnetic field structure that is correlated with changes in the optical spectrum. We find that the X-ray emission is due to the synchrotron process; we model the jet spectrum and discuss mechanisms for accelerating particles to the needed energies, together with implications for the orientation of the jet under a possible spine-sheath model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.