As both consumers and producers are shifting from fossil-derived materials to other, more sustainable approaches, there is a growing interest in bio-origin and biodegradable polymers. In search of bio-degradable electro-mechanically active materials, cellulose-multi wall carbon nanotube (Cell-CNT) composites are a focus for the development of actuators and sensors. In the current study, our aim was to fabricate Cell-CNT composite fibers and study their electro-mechanical response as linear actuators in aqueous and propylene carbonate-based electrolyte solutions. While the response was (expectedly) strongly solvent dependent, the different solvents also revealed unexpected phenomena. Cell-CNT fibers in propylene carbonate revealed a strong back-relaxation process at low frequencies, and also a frequency dependent response direction change (change of actuation direction). Cell-CNT fibers operated in aqueous electrolyte showed response typical to electrochemical capacitors including expansion at discharging with controllable actuation dependence on charge density. While the response was similarly stable in both electrolyte solution systems, the aqueous electrolytes were clearly favorable for Cell-CNT with 3.4 times higher conductivities, 4.3 times higher charge densities and 11 times higher strain.
Smart and soft electroactive polymer actuators have many beneficial properties, making them attractive for biomimetic and biomedical applications. However, the selection of components to fabricate biofriendly composites has been limited. Although biofriendly options for electrodes and membranes are available, the conventional ionic liquids (ILs) often used as the electrolytes in the actuators have been considered toxic in varying degrees. Here we present a smart electroactive composite with carefully designed and selected components that have shown low toxicity and a biofriendly nature. In the present study, polypyrrole-PVdF trilayer actuators using six different choline ILs were prepared and characterized. Choline ILs have shown promise in applications where low environmental and biological impact is critical. Despite this, the anions in ILs have a strong impact on toxicity. To evaluate how the anions effect the bioactivity of the ILs used to prepare the actuators, the ILs were tested on different microbial cultures (Escherichia coli, Staphylococcus aureus, Shewanella oneidensis MR-1) and HeLa cells. All of the selected choline ILs showed minimal toxic effects even at high concentrations. Electro-chemo-mechanical characterization of the actuators indicated that polypyrrole-PVdF actuators with choline ILs are viable candidates for soft robotic applications. From the tested ILs, choline acetate showed the highest strain difference and outperformed the reference system containing an imidazolium-based IL.
Some imidazolium-based ionic liquids (ILs) are able to dissolve microcrystalline cellulose to form 10 wt% solutions. This allows easy production of cellulose composite materials by mixing the respective solutions. The purpose of this work was to make an environmentally friendly novel material using cellulose as a binder to be an alternative for classical binders in electrically conductive materials. Eleven ILs were used to dissolve cellulose. The ILs included two ILs previously untested for this application. Monofilaments composed of three types of cellulose and carbon aerogels were prepared. Solutions of cellulose and carbon aerogels were made into electrically conducting materials. Regeneration of cellulose and composites from ILs was performed using water, ethanol, and acetone. From those antisolvents water proved to be the most effective. The solutions were made into films and fibre extrusions. The used ILs were successfully recovered and reused after regeneration of cellulose. This further strengthened the belief that dissolving cellulose with ionic liquids is a 'green process'.
While increasing power output is the most straight-forward solution for faster and stronger motion in technology, sports, or elsewhere, efficiency is what separates the best from the rest. In nature, where the possibilities of power increase are limited, efficiency of motion is particularly important; the same principle can be applied to the emerging biomimetic and bio-interacting technologies. In this work, by applying hints from nature, we consider possible approaches of increasing the efficiency of motion through liquid medium of bilayer ionic electroactive polymer actuations, focusing on the reduction of friction by means of surface tension and hydrophobicity. Conducting polyethylene terephthalate (PET) bilayers were chosen as the model actuator system. The actuation medium consisted of aqueous solutions containing tetramethylammonium chloride and sodium dodecylbenzenesulfonate in different ratios. The roles of ion concentrations and the surface tension are discussed. Hydrophobicity of the PET support layer was further tuned by adding a spin-coated silicone layer to it. As expected, both approaches increased the displacement—the best results having been obtained by combining both, nearly doubling the bending displacement. The simple approaches for greatly increasing actuation motion efficiency can be used in any actuator system operating in a liquid medium.
Smart and soft electroactive polymer actuators as building blocks for soft robotics have many beneficial properties that could make them useful in future biomimetic and biomedical applications. Gelatin—a material exploited for medical applications—can be used to make a fully biologically benign soft electroactive polymer actuator that provides high performance and has been shown to be harmless. In our study, these polypyrrole-gelatin trilayer actuators with choline acetate and choline isobutyrate showed the highest strain difference and highest efficiency in strain difference to charge density ratios compared to a reference system containing imidazolium-based ionic liquid and a traditional polyvinylidene fluoride (PVdF) membrane material. As neither the relative ion sizes nor the measured parameters of the ionic liquids could explain their behavior in the actuators, molecular dynamics simulations and density functional theory calculations were conducted. Strong cation-cation clustering was found and the radial distribution functions provided further insight into the topic, showing that the cation-cation correlation peak height is a good predictor of strain difference of the actuators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.