Thiadiamondoids and diamondoidthiols are orders of magnitude more abundant in oil altered by thermochemical sulfate reduction (TSR) than they are in nonaltered oil. This suggests that thiadiamondoids and diamondoidthiols form during TSR. In order to prove this hypothesis, we perform laboratory TSR experiments on diverse organic compounds using sodium sulfate as an oxidant in the presence of elemental sulfur and deionized water at 200 and 350 °C for 48 and 96 h under acidic conditions (pH ) 4). Our results show that thiadiamondoids and diamondoidthiols can be created from non-sulfur-containing diamondoids by TSR. It seems likely that diamondoid species are organic precursors of thiadiamondoids and diamondoidthiols. In addition, thiocholesterol yields trace quantities of dimethyl-2-thiaadamantanes when heated with montmorillonite at 200 °C, suggesting that these diamondoid derivatives may partly originate by molecular rearrangement of polycyclic sulfides and thiols in the presence of acidic clay minerals since they also exist in crude oil that has not undergone TSR. The present study of these heteroatomic cage compounds improves understanding of TSR and can be used to reduce risk in petroleum exploration.
Recent molecular phylogenetic and molecular clock data both suggest a pre-Mesozoic age for the divergence of the angiosperm lineage from other seed plants, greatly predating the confirmed fossil record of the angiosperm crown group. In addition, molecular phylogenetic stud ies have not supported the morphologically based conclusion that gnetophytes are the extant sister group to angiosperms. We examine these relationships and divergence ages by using a novel ap proach of examining the presence of oleanane. This includes the development of methods using zeolites to preferentially reduce hopanes that can co-elute with oleanane. The presence of this mo lecular fossil strongly correlates with angiosperm diversification; in its functionalized form, along with its triterpenoid precursors, it is found in many living angiosperms. Our data show that among non-angiosperm seed plants examined thus far, oleanane is found only in fossil Cretaceous Bennettitales and Permian Gigantopteridales, both of which share characteristics with angiosperms. Previous morphological phylogenetic results indicate Bennettitales could be a sister group to or member of the angiosperm stem lineage, and results of our preliminary phylogenetic analysis in cluding the Gigantopteridales suggests the same. Our data, based on a new pyrolysis method to treat living species, support previous research indicating that oleanane and its precursors are ab sent in living gnetophytes. If oleanane originated once in seed plants then the angiosperm stem lineage would have diverged from other seed plant lineages by the late Paleozoic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.