Multiple sclerosis (MS) is characterized by demyelinated and inflammatory lesions in the brain and spinal cord that are highly variable in terms of cellular content. Here, we used imaging mass cytometry (IMC) to enable the simultaneous imaging of 15+ proteins within staged MS lesions. To test the potential for IMC to discriminate between different types of lesions, we selected a case with severe rebound MS disease activity after natalizumab cessation. With post-acquisition analysis pipelines we were able to: (1) Discriminate demyelinating macrophages from the resident microglial pool; (2) Determine which types of lymphocytes reside closest to blood vessels; (3) Identify multiple subsets of T and B cells, and (4) Ascertain dynamics of T cell phenotypes vis-à-vis lesion type and location. We propose that IMC will enable a comprehensive analysis of single-cell phenotypes, their functional states and cell-cell interactions in relation to lesion morphometry and demyelinating activity in MS patients.
Background:The appropriate location for biopsy procurement relative to an ulcer in active Crohn's disease is unknown.Aim: To explore the relationship between biopsy location, histological disease activity, proinflammatory gene expression and the presence of inflammatory cells.Methods: Fifty-one patients with Crohn's disease and ulcers >0.5 cm diameter in the colon and/or ileum were prospectively enrolled at three centres. Biopsies were obtained from 0 mm, 7 to 8 mm and 21 to 24 mm from the edge of the largest ulcer.Histological activity was blindly assessed with the Global Histological Disease Activity Score, the Robarts Histopathology and Nancy Histological indices. Messenger ribonucleic acid (mRNA) levels for interleukins-6, -8 and -23 (p19 and p40 subunits), CD31 and S100A9 were measured using quantitative polymerase chain reaction. The number of CD3+, CD68+ and myeloperoxidase-positive cells was quantified by immunohistochemistry. Data were analysed using mixed models with location and segment as fixed effects and patients as random effect to account for correlation among segments within a patient.Results: Histological disease activity scores (P < 0.0001), proinflammatory gene expression levels (P < 0.005) and numbers of myeloperoxidase-positive cells (P < 0.0001) were highest in biopsies from the ulcer edge in the colon and ileum, with decreasing gradients observed with distance from the edge (P < 0.05). No differences between colonic and ileal samples were detected for the parameters measured at any location.
Conclusions:Biopsies from the ulcer edge in patients with Crohn's disease yielded the greatest histological disease activity and mRNA levels and had similar readouts in the colon and ileum. Research is needed to confirm this conclusion for other measures.
The formation of hypoxic microenvironments within solid tumors is known to contribute to radiation resistance, chemotherapy resistance, immune suppression, increased metastasis, and an overall poor prognosis. It is therefore crucial to understand the spatial and molecular mechanisms that contribute to tumor hypoxia formation to improve the efficacy of radiation treatment, develop hypoxia-directed therapies, and increase patient survival. The objective of this study is to present a number of complementary novel methods for quantifying tumor hypoxia and proliferation in multiplexed immunofluorescence images, especially in relation to the location of perfused blood vessels. A standard marker analysis strategy is to take a positive pixel count approach, in which a threshold for positive stain is used to compute a positive area fraction for hypoxia. This work is a reassessment of that approach, utilizing not only cell segmentation but also distance to nearest blood vessel in order to incorporate spatial information into the analysis. We describe a reproducible pipeline for the visualization and quantitative analysis of hypoxia using a vessel distance analysis approach. This methodological pipeline can serve to further elucidate the relationship between vessel distance and microenvironment-linked markers such as hypoxia and proliferation, can help to quantify parameters relating to oxygen consumption and hypoxic tolerance in tissues, as well as potentially serve as a hypothesis generating tool for future studies testing hypoxia-linked markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.