A sediment core from Reykjanes Ridge has been studied at 10‐ to 50‐year time resolution to document variability of Holocene surface water conditions in the western North Atlantic and to evaluate effects of Holocene ice‐rafting episodes. Diatom assemblages are converted to quantitative sea surface temperatures (SST) using three different transfer functions. Spectral and scale‐space methods are also applied on the records to explore variability at different timescales. Diatom assemblage and SST records clearly show that decaying remnants of the Laurentide ice sheet strongly influenced early Holocene climate in the western North Atlantic. This overrode the predominance of Milankovitch forcing, which played a key role in the development of Holocene climate in the eastern North Atlantic and Nordic Seas. Superimposed on general Holocene climate change is high‐frequency SST variability on the order of 1°−3°C. The record also documents climatic oscillations with 600‐ to 1000‐, ∼1500‐, and 2500‐year periodicities, with a time‐dependent dominance of different periodicities through the Holocene; a clear change in variability occurred about 5 ka BP. The SST record also provides evidence for Holocene cooling events (HCE) that, in some cases, correlate to documented southward intrusions of ice into the North Atlantic.
Two isotopic ice core records from western Svalbard are calibrated to reconstruct more than 1000 years of past winter surface air temperature variations in Longyearbyen, Svalbard, and Vardø, northern Norway. Analysis of the derived reconstructions suggests that the climate evolution of the last millennium in these study areas comprises three major sub-periods. The cooling stage in Svalbard (ca. 800–1800) is characterized by a progressive winter cooling of approximately 0.9 °C century−1 (0.3 °C century−1 for Vardø) and a lack of distinct signs of abrupt climate transitions. This makes it difficult to associate the onset of the Little Ice Age in Svalbard with any particular time period. During the 1800s, which according to our results was the coldest century in Svalbard, the winter cooling associated with the Little Ice Age was on the order of 4 °C (1.3 °C for Vardø) compared to the 1900s. The rapid warming that commenced at the beginning of the 20th century was accompanied by a parallel decline in sea-ice extent in the study area. However, both the reconstructed winter temperatures as well as indirect indicators of summer temperatures suggest the Medieval period before the 1200s was at least as warm as at the end of the 1990s in Svalbard
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.