BACKGROUNDInjuries from falls are major contributors to complications and death in older adults. Despite evidence from efficacy trials that many falls can be prevented, rates of falls resulting in injury have not declined.
METHODSWe conducted a pragmatic, cluster-randomized trial to evaluate the effectiveness of a multifactorial intervention that included risk assessment and individualized plans, administered by specially trained nurses, to prevent fall injuries. A total of 86 primary care practices across 10 health care systems were randomly assigned to the intervention or to enhanced usual care (the control) (43 practices each). The participants were community-dwelling adults, 70 years of age or older, who were at increased risk for fall injuries. The primary outcome, assessed in a time-to-event analysis, was the first serious fall injury, adjudicated with the use of participant report, electronic health records, and claims data. We hypothesized that the event rate would be lower by 20% in the intervention group than in the control group.
RESULTSThe demographic and baseline characteristics of the participants were similar in the intervention group (2802 participants) and the control group (2649 participants); the mean age was 80 years, and 62.0% of the participants were women. The rate of a first adjudicated serious fall injury did not differ significantly between the groups, as assessed in a time-to-first-event analysis (events per 100 person-years of follow-up, 4.9 in the intervention group and 5.3 in the control group; hazard ratio, 0.92; 95% confidence interval [CI], 0.80 to 1.06; P = 0.25). The rate of a first participant-reported fall injury was 25.6 events per 100 person-years of follow-up in the intervention group and 28.6 events per 100 person-years of follow-up in the control group (hazard ratio, 0.90; 95% CI, 0.83 to 0.99; P = 0.004). The rates of hospitalization or death were similar in the two groups.
CONCLUSIONSA multifactorial intervention, administered by nurses, did not result in a significantly lower rate of a first adjudicated serious fall injury than enhanced usual care.
Mice homozygous for targeted deletion of the interleukin 10 gene (Il-10) have been partially characterized as a model for human frailty. These mice have increased serum interleukin (IL)-6 in midlife, skeletal muscle weakness, and an altered skeletal muscle gene expression profile compared to age and sex-matched C57BL/6 (B6) control mice. In order to further characterize for use as a frailty model, we evaluated the evolution of inflammatory pathway activation, endocrine change, and mortality in these mice. Serum was collected in groups of ageand sex-matched B6.129P2-Il10 tm1Cgn /J (IL-10 tm/tm ) mice and B6 control mice at age 12, 24, 48, 72, and 90 weeks. Cytokines including IL-6, interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), chemokine (C-X-C motif) ligand 1 (KC), IL-12, and IL-10 were measured using electro-chemiluminescent multiplex immunoassay and insulin-like growth factor 1 (IGF-1) was measured using solid-phase enzyme-linked immunosorbent assay. A separate longitudinal cohort was monitored from age 35 weeks to approximately 100 weeks. Survival was evaluated by Kaplan-Meier survival estimates and detailed necropsy information was gathered in a subset of mice that died or were sacrificed. In IL-10 tm/tm mice compared to B6 controls, serum IL-6, IL-1β, TNF-α, IFN-γ, KC levels were significantly elevated across the age groups, serum mean IGF-1 levels were higher in the 48-week-old groups, and overall mortality rate was significantly higher. The quadratic relationship between IGF-1 and age was significantly different between the two strains of mice. Serum IL-6 was positively associated with IGF-1 but the effect was significantly larger in IL-10 tm/tm mice. These findings provide additional rationale for the use of the IL-10 tm/tm mouse as a model for frailty and for lowgrade inflammatory pathway activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.