In this report, microcolumn separation schemes involving monolithic capillary columns with immobilized lectins, and relevant to nanoglycomics/nanoproteomics were introduced. Positive and neutral monoliths based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) were designed for achieving lectin affinity chromatography (LAC) by nano-LC and CEC. The positive monoliths (i.e., monoliths with cationic sites) afforded relatively high permeability in nano-LC but lack predictable EOF magnitude and direction, while neutral monoliths provided a good compromise between reasonable permeability in nano-LC and predictable EOF in CEC. Lectin affinity nano-LC permitted the enrichment of classes of different glycoproteins having similar N-glycans recognized by the immobilized lectin, whereas lectin affinity CEC provided the simultaneous capturing and separation of different glycoproteins due to differences in charge-to-mass ratio. Also, this investigation demonstrated for the first time the coupling of lectin capillary columns in series (i.e., tandem columns) for enhanced separation of glycoproteins by LAC using the CEC modality. Furthermore, in the coupled columns format, glycoforms of a given glycoprotein were readily separated.
A neutral, nonpolar monolithic capillary column having a relatively strong electroosmotic flow (EOF) yet free of electrostatic interactions with charged solutes was developed for the reversed-phase capillary electrochromatography (RP-CEC) of neutral and charged species including peptides and proteins. The neutral nonpolar monolith is based on the in situ polymerization of pentaerythritol diacrylate monostearate (PEDAS) in a ternary porogenic solvent composed of cyclohexanol, ethylene glycol, and water. PEDAS plays the role of both the cross-linker and the ligand provider, generating a macroporous nonpolar monolith having C17 chains as the chromatographic ligands. Despite the fact that the neutral PEDAS monolith is devoid of fixed charges, the monolithic capillary columns exhibited a relatively strong EOF due to the ability of PEDAS to adsorb sufficient amounts of electrolyte ions from the mobile phase. The adsorbed ions imparted the neutral PEDAS monolith the zeta potential necessary to support the EOF required for mass transport across the monolithic column. The absence of fixed charges on the surface of the neutral PEDAS monolith and in turn the adsorption sites for electrostatic attraction of charged solutes allowed the rapid and efficient separations of proteins and peptides at pH 7.0, with an average plate number of 255,000 and 121,000 plates/m, respectively. To the best of our knowledge, this constitutes the first report on the separation of proteins at neutral pH by RP-CEC using a neutral monolithic column.
This review article is aimed at assessing the recent progress made in affinity nano-LC and affinity CEC performed in capillaries and microchips. A variety of biospecific interactions is covered including lectin affinity, immunoaffinity, immobilized metal affinity, sugar-based affinity, protein A affinity, protein G affinity, aptamer affinity, enzyme affinity, and other miscellanea. ACE involving affinity interaction in free solution is not covered in this review article. Also, affinity-based separations involving chiral recognition are not the subject of this review article because they are the topic of a more specialized review article on chiral separations in this special issue. A total of 31 papers published in the period 1998-2006 have been discussed in this review article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.