Insect midgut microbial symbionts have been considered as an integral component in thermal adaptation due to their differential thermal sensitivity. Altered midgut microbial communities can influence both insect physiology and competence for important vector-borne pathogens. This study sought to gain insights into how Aedes aegypti midgut microbes and life history traits are affected by increase in baseline diurnal temperature. Increase in temperature resulted in the enrichment of specific taxa with Bacillus being the most enriched. Bacillus is known to be heat tolerant. It also resulted in a dissimilar microbial assemblage (Bray–Curtis Index, PERMANOVA, F = 2.2063; R2 = 0.16706; P = 0.002) and reduced survivorship (Log-rank [Mantel-Cox] test, Chi-square = 35.66 df = 5, P < 0.0001). Blood meal intake resulted in proliferation of pathogenic bacteria such as Elizabethkingia in the midgut of the mosquitoes. These results suggest that alteration of temperature within realistic parameters such as 2 °C for Ae. aegypti in nature may impact the midgut microbiome favoring specific taxa that could alter mosquito fitness, adaptation and vector–pathogen interactions.
Characteristics of 32 freshwater lakes in central and western Nova Scotia were quantified to determine the relative influence of various biological, chemical, and physical factors on habitat selection by black ducks (Anas rubripes Brewster) during brood-rearing. Acidity and trophic status varied greatly among the waterbodies, of which 20 were used by black ducks for rearing their young. Duck brood density was positively related to lake trophic status. The highest brood densities occurred on hypertrophic waterbodies with a large anthropogenic input of nutrients.Lakes with black duck broods had significantly higher concentrations of phosphorus and nitrogen, darker water with more dissolved organic carbon, and within the littoral zone, greater macrophyte cover, greater density and biomass of pelagic invertebrates, gentler slopes, and a softer, more organic substrate. Similar trends were observed within a subset of 17 acidic lakes (pH < 5.5), 8 of which supported black ducks.The density of black duck broods was significantly correlated with 17 of 20 variables, most notably total phosphorus (r = + 0.81). Partial correlation (removing the effect of total phosphorus) revealed that brood density was significantly correlated with the abundances of pelagic (r= + 0.77) and benthic (r = + 0.68) invertebrates, macrophyte cover (r = + 0.52), and substrate score (r = + 0.57), but not with other chemical variables, including pH.Our results suggest that quality brood-rearing habitat is distinguished by a combination of factors, especially available nutrients, macrophyte cover, and invertebrates, subject to constraints imposed by physical characteristics of the littoral zone of the lake. The abundance of invertebrates, the primary food of young black ducks, emerged as the most important biological factor influencing the density of black duck broods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.