Igneous rocks of the Sierra Madre Occidental have been studied along two traverses across the range. One is at lat 24°N between Mazatlan and Durango City, where contiguous mapped areas extend across the Sierra; the other is near lat 28°N, where several separate areas west and north of Chihuahua City have been mapped. In these regions the Sierra contains two vast and largely coextensive igneous sequences, both calc-alkalic and both including ignimbrites. The older sequence of rocks, which ranges in age from 45 m.y. to at least 100 m.y., is characterized by abundant batholithic as well as volcanic rocks and is dominantly intermediate in composition. The younger sequence is dominated by rhyodacitic to rhyolitic ignimbrites erupted from large caldera complexes, generally accompanied by rhyolite flows and domes and small outpourings of mafic lavas. Intermediate rocks are rare, and volcanism was largely confined to the interval 34 to 27 m.y. ago, although some activity persisted until 23 m.y. ago.
During middle Eocene to middle Miocene time, development of the Cenozoic icehouse was coincident with a prolonged episode of explosive silicic volcanism, the ignimbrite fl are-up of southwestern North America. We present geochronologic and biogeochemical data suggesting that, prior to the establishment of full glacial conditions with attendant increased eolian dust emission and oceanic upwelling, iron fertilization by great volumes of silicic volcanic ash was an effective climatic forcing mechanism that helped to establish the Cenozoic icehouse. Most Phanerozoic cool-climate episodes were coeval with major explosive volcanism in silicic large igneous provinces, suggesting a common link between these phenomena.
[1] Eclogite and pyroxenite xenoliths from ultramafic diatremes of the Navajo province on the Colorado Plateau have been analyzed to investigate hydration of continental mantle and effects of low-angle subduction on the mantle wedge. Xenoliths have been characterized by petrographic and electron probe analysis and by Sm-Nd, Rb-Sr, K-Ar, and O isotopic analysis of mineral separates from one eclogite and by U-Pb isotopic analysis of zircons from three samples. K-Ar analysis of phengite establishes eruption of a Garnet Ridge, Arizona, diatreme at 30 Ma. Sm-Nd and Rb-Sr analyses of clinopyroxene and garnet from that eclogite document recrystallization shortly preceding eruption. Three zircon fractions have been analyzed from that eclogite and from two others representing the nearby Moses Rock and Mule Ear diatremes. Seven of nine small multigrain fractions scatter about a poorly fit discordia between ca. 35 Ma and 1515 Ma (fractions range from overlapping concordia at the lower intercept to a 207 Pb/ 206 Pb age of ca. 1220 Ma). The discordant fractions establish a mid-Proterozoic zircon component in each eclogite, inconsistent with an origin from basalt of the Farallon plate. The pressure recorded by one of these eclogites (3.3 GPa) exceeds that of an eclogite previously attributed to the Farallon plate. Nonetheless, each of the eclogites contains a fraction of nearly concordant zircons with ages in the range 35 to 41 Ma, and one rock also contains a fraction that is nearly concordant at 70 Ma. These concordant ages are interpreted to record episodic zircon growth during recrystallization of Proterozoic mantle. The concordant zircon ages are consistent with published data that establish recrystallization of Navajo eclogites from 81 to 33 Ma, a time interval similar to that of the Laramide orogeny. The eclogite-facies recrystallization and growth of new zircon are attributed to the catalytic effects of water introduced into the mantle from the Farallon slab. Water penetrated fracture zones extending for at least tens of kilometers into the mantle wedge above the Farallon slab during low-angle subduction. Magmatism in the San Juan volcanic field to the northeast of the diatremes may be related to similar hydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.