BackgroundPowdery mildew (PM) is an important disease of cucumber (Cucumis sativus L.). CsaMLO8 was previously identified as a candidate susceptibility gene for PM in cucumber, for two reasons: 1) This gene clusters phylogenetically in clade V, which has previously been shown to harbour all known MLO-like susceptibility genes for PM identified in dicot species; 2) This gene co-localizes with a QTL on chromosome 5 for hypocotyl-specific resistance to PM.MethodsCsaMLO8 alleles from susceptible and resistant cucumber were cloned and transformed to mlo-mutant tomato. Cucumber seedlings were inoculated with Podosphaera xanthii, tissues were studied for CsaMLO8 expression at several timepoints post inoculation using qRT-PCR. The occurence of the observed loss-of-function allele of CsaMLO8 in resequenced cucumber accessions was studied in silico.ResultsWe cloned CsaMLO8 alleles from susceptible and resistant cucumber genotypes, the latter carrying the QTL for hypocotyl resistance. We found that insertion of a non-autonomous Class LTR retrotransposable element in the resistant genotype leads to aberrant splicing of CsaMLO8 mRNA. Heterologous expression of the wild-type allele of CsaMLO8 in a tomato mlo-mutant restored PM susceptibility. However, heterologous expression of the CsaMLO8 allele cloned from the resistant cucumber genotype failed to restore PM susceptibility. Furthermore we showed that inoculation of susceptible cucumber with the PM pathogen Podosphaera xanthii induced transcriptional upregulation of CsaMLO8 in hypocotyl tissue, but not in cotyledon or leaf tissue. This coincides with the observation that the QTL at the CsaMLO8-locus causes full resistance in hypocotyl tissue, but only partial resistance in cotyledons and true leafs. We studied the occurrence of the loss-of-function allele of CsaMLO8 in cucumber germplasm by an in silico approach using resequencing data of a collection of 115 cucumber accessions, and found that this allele was present in 31 out of 115 accessions.ConclusionsCsaMLO8 was characterised as a functional susceptibility gene to PM, particularly in the hypocotyl where it was transcriptionally upregulated upon inoculation with the PM pathogen P. xanthii. A loss-of-function mutation in CsaMLO8 due to the insertion of a transposable element was found to be the cause of hypocotyl resistance to PM. This particular allele of CsaMLO8 was found to occur in 27 % of the resequenced cucumber accessions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0635-x) contains supplementary material, which is available to authorized users.
Background: The establishment of mutant populations together with the strategies for targeted mutation detection has been applied successfully to a large number of organisms including many species in the plant kingdom. Considerable efforts have been invested into research on tomato as a model for berry-fruit plants. With the progress of the tomato sequencing project, reverse genetics becomes an obvious and achievable goal.
One of the biggest problems in cucumber cultivation is cucurbit downy mildew (DM), caused by the obligate biotroph Pseudoperonospora cubensis. Whereas DM in cucumber was previously efficiently controlled by the dm-1 gene from Indian cucumber accession PI 197087, this resistance was broken by new DM strains, prompting the search for novel sources of resistance. A promising source of resistance is the wild cucumber accession PI 197088. It was previously shown that DM resistance in this genotype inherits polygenically. In this paper, we put the focus on one of the QTL, DM4.1 that is located on chromosome 4. QTL DM4.1 was shown to consist of three subQTL: DM4.1.1 affected pathogen-induced necrosis, DM4.1.2 was shown to have an additive effect on sporulation, and DM4.1.3 had a recessive effect on chlorosis as well as an effect on sporulation. Near-isogenic lines (NILs) were produced by introgressing the subQTLs into a susceptible cucumber line (HS279) with good horticultural traits. Transcriptomic analysis revealed that many genes in general, and defense pathway genes in particular, were differentially expressed in NIL DM4.1.1/.2 compared to NIL DM4.1.3 and the susceptible parent HS279. This indicates that the resistance from subQTL DM4.1.1 and/or subQTL DM4.1.2 likely involves defense signaling pathways, whereas resistance due to subQTL DM4.1.3 is more likely to be independent of known defense pathways. Based on fine-mapping data, we identified the RLK gene CsLRK10L2 as a likely candidate for subQTL DM4.1.2, as this gene was found to have a loss-of-function mutation in the susceptible parent HS279, and was strongly upregulated by P. cubensis inoculation in NIL DM4.1.1/.2. Heterologous expression of this gene triggered necrosis, providing further evidence that this gene is indeed causal for subQTL DM4.1.2.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Background Falcarinol-type polyacetylenes (PAs) such as falcarinol (FaOH) and falcarindiol (FaDOH) are produced by several Apiaceae vegetables such as carrot, parsnip, celeriac and parsley. They are known for numerous biological functions and contribute to the undesirable bitter off-taste of carrots and their products. Despite their interesting biological functions, the genetic basis of their structural diversity and function is widely unknown. A better understanding of the genetics of the PA levels present in carrot roots might support breeding of carrot cultivars with tailored PA levels for food production or nutraceuticals. Results A large carrot F2 progeny derived from a cross of a cultivated inbred line with an inbred line derived from a Daucus carota ssp. commutatus accession rich in PAs was used for linkage mapping and quantitative trait locus (QTL) analysis. Ten QTLs for FaOH and FaDOH levels in roots were identified in the carrot genome. Major QTLs for FaOH and FaDOH with high LOD values of up to 40 were identified on chromosomes 4 and 9. To discover putative candidate genes from the plant fatty acid metabolism, we examined an extended version of the inventory of the carrot FATTY ACID DESATURASE2 (FAD2) gene family. Additionally, we used the carrot genome sequence for a first inventory of ECERIFERUM1 (CER1) genes possibly involved in PA biosynthesis. We identified genomic regions on different carrot chromosomes around the found QTLs that contain several FAD2 and CER1 genes within their 2-LOD confidence intervals. With regard to the major QTLs on chromosome 9 three putative CER1 decarbonylase gene models are proposed as candidate genes. Conclusion The present study increases the current knowledge on the genetics of PA accumulation in carrot roots. Our finding that carrot candidate genes from the fatty acid metabolism are significantly associated with major QTLs for both major PAs, will facilitate future functional gene studies and a further dissection of the genetic factors controlling PA accumulation. Characterization of such candidate genes will have a positive impact on carrot breeding programs aimed at both lowering or increasing PA concentrations in carrot roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.