Aligning large populations of colloidal nanorods (NRs) into ordered assemblies provides a strategy for engineering macroscopic functional materials with strong optical anisotropy. The bulk optical properties of such systems depend not only on the individual NR building blocks, but also on their meso- and macroscale ordering, in addition to more complex inter-particle coupling effects. Here, we investigate the dynamic alignment of colloidal CdSe/CdS NRs in the presence of AC electric fields by measuring concurrent changes in optical transmission. Our work identifies two distinct scales of interaction that give rise to the field-driven optical response: (1) the spontaneous mesoscale self-assembly of colloidal NRs into structures with increased optical anisotropy, and (2) the macroscopic ordering of NR assemblies along the direction of the applied AC field. By modeling the alignment of NR ensembles using directional statistics, we experimentally quantify the maximum degree of order in terms of the average deviation angle relative to the field axis. Results show a consistent improvement in alignment as a function of NR concentration—with a minimum average deviation of 18.7°—indicating that mesoscale assembly helps facilitate field-driven alignment of colloidal NRs.
Aligning large populations of colloidal nanorods (NRs) into ordered assemblies provides a strategy for engineering macroscopic functional materials with strong optical anisotropy. The bulk optical properties of such systems depend not only on the individual NR building blocks, but also on their meso- and macroscale ordering, in addition to more complex inter-particle coupling effects. Here, we investigate the dynamic alignment of colloidal CdSe/CdS NRs in the presence of AC electric fields by measuring concurrent changes in optical transmission. Our work identifies two distinct scales of interaction that give rise to the field-driven optical response: (1) the spontaneous mesoscale self-assembly of colloidal NRs into structures with increased optical anisotropy, and (2) the macroscopic ordering of NR assemblies along the direction of the applied AC field. By modeling the alignment of NR ensembles using directional statistics, we experimentally quantify the maximum degree of order in terms of the average deviation angle relative to the field axis. Results show a consistent improvement in alignment as a function of NR concentration—with a minimum average deviation of 18.7°—indicating that mesoscale assembly helps facilitate field-driven alignment of colloidal NRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.