N-methyladenosine (mA) is an internal, reversible nucleotide modification that constitutes an important regulatory mechanism in RNA biology. Unlike mammals and yeast, no component of the mA cellular machinery has been described in plants at present. mA has been identified in the genomic RNAs of diverse mammalian viruses and, additionally, viral infection was found to be modulated by the abundance of mA in viral RNAs. Here we show that the protein atALKBH9B (At2g17970) is a demethylase that removes mA from single-stranded RNA molecules in vitro. atALKBH9B accumulates in cytoplasmic granules, which colocalize with siRNA bodies and associate with P bodies, suggesting that atALKBH9B mA demethylase activity could be linked to mRNA silencing and/or mRNA decay processes. Moreover, we identified the presence of mA in the genomes of two members of the family, alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). The demethylation activity of atALKBH9B affected the infectivity of AMV but not of CMV, correlating with the ability of atALKBH9B to interact (or not) with their coat proteins. Suppression of atALKBH9B increased the relative abundance of mA in the AMV genome, impairing the systemic invasion of the plant, while not having any effect on CMV infection. Our findings suggest that, as recently found in animal viruses, mA modification may represent a plant regulatory strategy to control cytoplasmic-replicating RNA viruses.
In common with a range of environmental and biological stresses, heat shock results in the accumulation of misfolded proteins and a collection of downstream consequences for cellular homeostasis and growth. Within this complex array of responses, the sensing of and responses to misfolded proteins in specific subcellular compartments involves specific chaperones, transcriptional regulators, and expression profiles. Using biological (ectopic protein expression and virus infection) and chemical triggers for misfolded protein accumulation, we have profiled the transcriptional features of the response to misfolded protein accumulation in the cytosol (i.e., the cytoplasmic protein response [CPR]) and identified the effects as a subcomponent of the wider effects induced by heat shock. The CPR in Arabidopsis thaliana is associated with the heat shock promoter element and the involvement of specific heat shock factors (HSFs), notably HSFA2, which appears to be regulated by alternative splicing and non-sense-mediated decay. Characterization of Arabidopsis HSFA2 knockout and overexpression lines showed that HSFA2 is one of the regulatory components of the CPR.
Prunus spp. are affected by a large number of viruses, causing significant economic losses through either direct or indirect damage, which results in reduced yield and fruit quality. Among these viruses, members of the genus Ilarvirus (isometric labile ringspot viruses) occupy a significant position due to their distribution worldwide. Although symptoms caused by these types of viruses were reported early in the last century, their molecular characterization was not achieved until the 1990s, much later than for other agronomically relevant viruses. This was mainly due to the characteristic liability of virus particles in tissue extracts. In addition, ilarviruses, together with Alfalfa mosaic virus, are unique among plant viruses in that they require a few molecules of the coat protein in the inoculum in order to be infectious, a phenomenon known as genome activation. Another factor that has made the study of this group of viruses difficult is that infectious clones have been obtained only for the type member of the genus, Tobacco streak virus. Four ilarviruses, Prunus necrotic ringspot virus, Prune dwarf virus, Apple mosaic virus, and American plum line pattern virus, are pathogens of the main cultivated fruit trees. As stated in the 9th Report of the International Committee on Taxonomy of Viruses, virions of this genus are "unpromising subjects for the raising of good antisera." With the advent of molecular approaches for their detection and characterization, it has been possible to get a more precise view of their prevalence and genome organization. This review updates our knowledge on the incidence, genome organization and expression, genetic diversity, modes of transmission, and diagnosis, as well as control of this peculiar group of viruses affecting fruit trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.