Because of the heterogeneity of natural landscapes, animals have to move through various types of areas that are more or less suitable with respect to their current needs. The locations of the profitable places actually used, which may be only a subset of the whole set of suitable areas available, are usually unknown, but can be inferred from movement analysis by assuming that these places correspond to the limited areas where the animals spend more time than elsewhere. Identifying these intensively used areas makes it possible, through subsequent analyses, to address both how they are distributed with respect to key habitat features, and the underlying behavioral mechanisms used to find these areas and capitalize on such habitats. We critically reviewed the few previously published methods to detect changes in movement behavior likely to occur when an animal enters a profitable place. As all of them appeared to be too narrowly tuned to specific situations, we designed a new, easy-to-use method based on the time spent in the vicinity of successive path locations. We used computer simulations to show that our method is both quite general and robust to noisy data.
Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer-resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.