Background and purpose: TRPM4 and TRPM5 are calcium-activated non-selective cation channels with almost identical characteristics. TRPM4 is detected in several tissues including heart, kidney, brainstem, cerebral artery and immune system whereas TRPM5 expression is more restricted. Determination of their roles in physiological processes requires specific pharmacological tools. TRPM4 is inhibited by glibenclamide, a modulator of ATP binding cassette proteins (ABC transporters), such as the cystic fibrosis transmembrane conductance regulator (CFTR). We took advantage of this similarity to investigate the effect of hydroxytricyclic compounds shown to modulate ABC transporters, on TRPM4 and TRPM5. Experimental approach: Experiments were conducted using HEK-293 cells permanently transfected to express human TRPM4 or TRPM5. Currents were recorded using the whole-cell and inside-out variants of the patch-clamp technique. Key results: The CFTR channel activator benzo[c]quinolizinium MPB-104 inhibited TRPM4 current with an IC 50 in the range of 2 Â 10 À5 M, with no effect on single-channel conductance. In addition, 9-phenanthrol, lacking the chemical groups necessary for CFTR activation, also reversibly inhibited TRPM4 with a similar IC 50 . Channel inhibition was voltage independent. The IC 50 determined in the whole-cell and inside-out experiments were similar, suggesting a direct effect of the molecule. However, 9-phenanthrol was ineffective on TRPM5, the most closely related channel within the TRP protein family. Conclusions and implications: We identify 9-phenanthrol as a TRPM4 inhibitor, without effects on TRPM5. It could be valuable in investigating the physiological functions of TRPM4, as distinct from those of TRPM5.
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the ehanisms responsible for the dephosphorylation and spontes deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkali phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophyfline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR chanels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H,
In the disease cystic fibrosis (CF), the most common mutation delF508 results in endoplasmic reticulum retention of misfolded CF gene proteins (CFTR). We show that the a-1,2-glucosidase inhibitor miglustat (N-butyldeoxynojirimycin, NB-DNJ) prevents delF508-CFTR/calnexin interaction and restores cAMP-activated chloride current in epithelial CF cells. Moreover, miglustat rescues a mature and functional delF508-CFTR in the intestinal crypts of ileal mucosa from delF508 mice. Since miglustat is an orally active orphan drug (Zavesca Ò ) prescribed for the treatment of Gaucher disease, our findings provide the basis for future clinical evaluation of miglustat in CF patients.
The ATP binding cassette transporter ABC1 is a 220-kDa glycoprotein expressed by macrophages and required for engulfment of cells undergoing programmed cell death. Since members of this family of proteins such as P-glycoprotein and cystic fibrosis transmembrane conductance regulator share the ability to transport anions, we have investigated the transport capability of ABC1 expressed in Xenopus oocytes using iodide efflux and voltage-clamp techniques. We report here that ABC1 generates an anion flux sensitive to glibenclamide, sulfobromophthalein, and blockers of anion transporters. The anion flux generated by ABC1 is upregulated by orthovanadate, cAMP, protein kinase A, and okadaic acid. In other ABC transporters, mutating the conserved lysine in the nucleotide binding folds was found to severely reduce or abolish hydrolysis of ATP, which in turn altered the activity of the transporter. In ABC1, replacement of the conserved lysine 1892 in the Walker A motif of the second nucleotide binding fold increased the basal ionic flux, did not alter the pharmacological inhibitory profile, but abolished the response to orthovanadate and cAMP agonists. Therefore, we conclude that ABC1 is a cAMP-dependent and sulfonylureasensitive anion transporter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.