A fundamental problem in software-based security is whether local security checks inserted into the code are sufficient to implement a global security property. This article introduces a formalism based on a linear-time temporal logic for specifying global security properties pertaining to the control flow of the program, and illustrates its expressive power with a number of existing properties. We define a minimalistic, security-dedicated program model that only contains procedure call and run-time security checks and propose an automatic method for verifying that an implementation using local security checks satisfies a global security property. We then show how to instantiate the framework to the security architecture of Java 2 based on stack inspection and privileged method calls.
When goals fall in decidable logic fragments, users of proofassistants expect automation. However, despite the availability of decision procedures, automation does not come for free. The reason is that decision procedures do not generate proof terms. In this paper, we show how to design efficient and lightweight reflexive tactics for a hierarchy of quantifier-free fragments of integer arithmetics. The tactics can cope with a wide class of linear and non-linear goals. For each logic fragment, off-the-shelf algorithms generate certificates of infeasibility that are then validated by straightforward reflexive checkers proved correct inside the proof-assistant. This approach has been prototyped using the Coq proofassistant. Preliminary experiments are promising as the tactics run fast and produce small proof terms.
Abstract. We define an operational semantics for the Signal language and design an analysis which allows to verify properties pertaining to the relation between values of the numeric and boolean variables of a reactive system. A distinguished feature of the analysis is that it is expressed and proved correct with respect to the source program rather than on an intermediate representation of the program. The analysis calculates a safe approximation to the set of reachable states by a symbolic fixed point computation in the domain of convex polyhedra using a novel widening operator based on the convex hull representation of polyhedra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.