Bone resorption by osteoclasts and bone formation by osteoblasts are tightly coupled processes implicating factors in TNF, bone morphogenetic protein, and Wnt families. In osteoimmunology, macrophages were described as another critical cell population regulating bone formation by osteoblasts but the coupling factors were not identified. Using a high-throughput approach, we identified here Oncostatin M (OSM), a cytokine of the IL-6 family, as a major coupling factor produced by activated circulating CD14 1 or bone marrow CD11b 1 monocytes/macrophages that induce osteoblast differentiation and matrix mineralization from human mesenchymal stem cells while inhibiting adipogenesis. Upon activation of toll-like receptors (TLRs) by lipopolysaccharide or endogenous ligands, OSM was produced in classically activated inflammatory M1 and not M2 macrophages, through a cyclooxygenase-2 and prostaglandin-E2 regulatory loop. Stimulation of osteogenesis by activated monocytes/macrophages was prevented using neutralizing antibodies or siRNA to OSM, OSM receptor subunits gp130 and OSMR, or to the downstream transcription factor STAT3. The induced osteoblast differentiation program culminated with enhanced expression of CCAAT-enhancer-binding protein d, Cbfa1, and alkaline phosphatase. Overexpression of OSM in the tibia of mice has led to new bone apposition with no sign of bone resorption. Two other cytokines have also a potent role in bone formation induced by monocytes/macrophages and activation of TLRs: IL-6 and leukemia inhibitory factor. We propose that during bone inflammation, infection, or injury, the IL-6 family signaling network activated by macrophages and TLR ligands stimulates bone formation that is largely uncoupled from bone resorption and is thus an important target for anabolic bone therapies. STEM CELLS 2012;30:762-772 Disclosure of potential conflicts of interest is found at the end of this article.
SummaryInterleukin (IL)-36a, IL-36b and IL-36g are expressed highly in skin and are involved in the pathogenesis of psoriasis, while the antagonists IL-36Ra or IL-38, another potential IL-36 inhibitor, limit uncontrolled inflammation. The expression and role of IL-36 cytokines in rheumatoid arthritis (RA) and Crohn's disease (CD) is currently debated. Here, we observed that during imiquimod-induced mouse skin inflammation and in human psoriasis, expression of IL-36a, g and IL-36Ra, but not IL-36b and IL-38 mRNA, was induced and correlated with IL-1b and T helper type 17 (Th17) cytokines (IL-17A, IL-22, IL-23, CCL20). In mice with collageninduced arthritis and in the synovium of patients with RA, IL-36a, b, g, IL36Ra and IL-38 were all elevated and correlated with IL-1b, CCL3, CCL4 and macrophage colony-stimulating factor (M-CSF), but not with Th17 cytokines. In the colon of mice with dextran sulphate sodium-induced colitis and in patients with CD, only IL-36a, g and IL-38 were induced at relatively low levels and correlated with IL-1b and IL-17A. We suggest that only a minor subgroup of patients with RA (17-29%) or CD (25%) had an elevated IL-36 agonists/antagonists ratio, versus 93% of patients with psoriasis. By immunohistochemistry, IL-36 cytokines were produced by various cell types in skin, synovium and colonic mucosa such as keratinocytes, CD68 1 macrophages, dendritic/Langerhans cells and CD79a 1 plasma cells. In primary cultures of monocytes or inflammatory macrophages (M1), IL-36b and IL-36Ra were produced constitutively, but IL-36a, g and IL-38 were produced after lipopolysaccharide stimulation. These distinct expression profiles may help to explain why only subgroups of RA and CD patients have a potentially elevated IL-36 agonists/ antagonists ratio.
The emergence of the molecular triad osteoprotegerin (OPG)/Receptor Activator of NF-kB (RANK)/RANK Ligand (RANKL) has helped elucidate a key signalling pathway between stromal cells and osteoclasts. The interaction between RANK and RANKL plays a critical role in promoting osteoclast differentiation and activation leading to bone resorption. OPG is a soluble decoy receptor for RANKL that blocks osteoclast formation by inhibiting RANKL binding to RANK. The OPG/RANK/RANKL system has been shown to be abnormally regulated in several malignant osteolytic pathologies such as multiple myeloma [MM, where enhanced RANKL expression (directly by tumour cells or indirectly by stromal bone cells or T-lymphocytes)] plays an important role in associated bone destruction. By contrast, production of its endogenous counteracting decoy receptor OPG is either inhibited or too low to compensate for the increase in RANKL production. Therefore, targeting the OPG/RANK/RANKL axis may offer a novel therapeutic approach to malignant osteolytic pathologies. In animal models, OPG or soluble RANK was shown both to control hypercalcaemia of malignancy and the establishment and progression of osteolytic metastases caused by various malignant tumours. To this day, only one phase I study has been performed using a recombinant OPG construct that suppressed bone resorption in patients with multiple myeloma or breast carcinoma with radiologically confirmed bone lesions. RANK-Fc also exhibits promising therapeutic effects, as revealed in animal models of prostate cancer and multiple myeloma. If the animal results translate to similar clinical benefits in humans, using RANK-Fc or OPG may yield novel and potent strategies for treating patients with established or imminent malignant bone diseases and where standard therapeutic regimens have failed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.