This chapter proposes a remote sensing multi-angles methodology to assess the transition at the interface of the forest-savanna land cover. On Sentinel2-A median images of successive dry seasons, three referential and nine analytical spectral indices were computed. The change vector analysis (CVA) was performed, selecting further one magnitude per index. The averaged moving standard deviation index (aMSDI) was proposed to compare spatial intensity of anomalies among selected CVA, and then statistically assessed through spatial and no-spatial autoregression tests. The cross-correlation and simple linear combination (SCL) computations spotted the overall anomaly extent. Three machine learning algorithms, i.e., classification and regression trees (CART), random forest (RF), and support vector machine (SVM), helped mapping the distribution of each specie. As result, the CVA confirmed each index ability to add new information. The aMSDI gave the harmonized interval [0–0.083] among CVA, confirmed with all p−values=0, z−scores>2.5, clustering of anomaly pixel,and adjusted R2≤0.19. Three trends of vegetation distribution were distinguished with 88.7% overall accuracy and 0.86 kappa coefficient. Finally, extremely affected areas were spotted in upper latitudes towards Sahel and desert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.