BACKGROUND CONTEXT: The contribution of anatomical structures to the stability of the spine is of great relevance for diagnostic, prognostic and therapeutic evaluation of spinal pathologies. Although a plethora of literature is available, the contribution of anatomical structures is still not well understood. PURPOSE: We aimed to quantify the biomechanical relevance of each of the passive spinal structure trough deliberate biomechanical test series using a stepwise reduction approach on cadavers. STUDY DESIGN: Biomechanical cadaveric study. METHODS: Fifty lumbar spinal segments originating from 22 human lumbar cadavers were biomechanically tested in a displacement-controlled stepwise reduction study: the intertransverse ligaments, the supraspinous and interspinous ligaments, the facet joint capsules (FJC), the facet joints (FJ), the ligamentum flavum (LF), the posterior longitudinal ligament (PLL), and the anterior longitudinal ligament were subsequently reduced. In the intact state and after each transection step, the segments were physiologically loaded in flexion, extension, axial rotation (AR), lateral bending (LB) and with anterior (AS), posterior (PS) and lateral shear (LS). Thirty-two specimens with only minor degeneration, representing a reasonably healthy subpopulation, were selected for the here presented evaluation. Quantitative values for load and spinal level dependent contribution patterns for the anatomical structures were derived. RESULTS: Small variability between of the contribution patterns are observed. The intervertebral disc (IVD) is exposed to about 67% of the applied load in LB and during shear loading, but less by load in flexion, extension and AR (less than 35%). The FJ&FJC are the main stabilizers in AR with 49%, but provide only 10% of the stability in extension. Beside the IVD, the LF and the PLL contribute mainly in flexion (22% and 16%, respectively), while the ALL plays a major role during extension (40%) and also contributes during LB (15%). The contribution of the intertransverse ligaments and the supraspinous and interspinous ligaments are very small in all loading directions (<2% and <6%, respectively). CONCLUSION: The IVD takes the main load in LB and absorbs shear loading, while the FJ&FJC stabilize AR. The ALL resists extension while LF and PLL stabilize flexion. With the small variability of contribution patterns, suggesting distinct adaptation of the structures to one another, the biomechanical characteristics of one structure have to be put in context of the whole spinal segment.
Purpose Dorsal screw-rod instrumentations are used for a variety of spinal disorders. Cross-links (CL) can be added to such constructs, however, no clear recommendations exist. This study aims to provide an overview of the available evidence on the effectiveness of CL, potentially allowing to formulate recommendations on their use. Methods A systematic literature review was performed on PubMed and 37 original articles were included and grouped into mechanical, biomechanical, finite element and clinical studies. The change in range of motion (ROM) was analyzed in mechanical and biomechanical studies, ROM, stiffness and stress distribution were evaluated in finite element studies and clinical outcome parameters were analyzed in clinical studies. Results A relative consistent reduction in ROM in axial rotation with CL-augmentation was reported, while minor and less consistent effects were observed in flexion–extension and lateral bending. The use of CLs was clinical beneficial in C1/2 fusion, while the limited clinical studies on other anatomic regions show no significant benefit for CL-augmentation. Conclusion While CL provides some additional axial rotation stability in most situations, lateral bending and flexion–extension are less affected. Based on clinical data, CL-augmentation can only be recommended for C1/2 instrumentations, while for other cases, further clinical studies are needed to allow for evidence-based recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.