Increasing consumer concern exists over the relationship between food composition and human health. Because of the known effects of fatty acids on human health, the development of a quick, inexpensive, and accurate method to directly quantify the fatty acid (FA) composition in milk would be valuable for milk processors to develop a payment system for milk pertinent to their customer requirements and for farmers to adapt their feeding systems and breeding strategies accordingly. The aim of this study was (1) to confirm the ability of mid-infrared spectrometry (MIR) to quantify individual FA content in milk by using an innovative procedure of sampling (i.e., samples were collected from cows belonging to different breeds, different countries, and in different production systems); (2) to compare 6 mathematical methods to develop robust calibration equations for predicting the contents of individual FA in milk; and (3) to test interest in using the FA equations developed in milk as basis to predict FA content in fat without corrections for the slope and the bias of the developed equations. In total, 517 samples selected based on their spectral variability in 3 countries (Belgium, Ireland, and United Kingdom) from various breeds, cows, and production systems were analyzed by gas chromatography (GC). The samples presenting the largest spectral variability were used to calibrate the prediction of FA by MIR. The remaining samples were used to externally validate the 28 FA equations developed. The 6 methods were (1) partial least squares regression (PLS); (2) PLS+repeatability file (REP); (3) first derivative of spectral data+PLS; (4) first derivative+REP+PLS; (5) second derivative of spectral data+PLS; and (6) second derivative+REP+PLS. Methods were compared on the basis of the cross-validation coefficient of determination (R2cv), the ratio of standard deviation of GC values to the standard error of cross-validation (RPD), and the validation coefficient of determination (R2v). The third and fourth methods had, on average, the highest R2cv, RPD, and R2v. The final equations were built using all GC and the best accuracy was observed for the infrared predictions of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, C18:1 trans, C18:1 cis-9, C18:1 cis, and for some groups of FA studied in milk (saturated, monounsaturated, unsaturated, short-chain, medium-chain, and long-chain FA). These equations showed R2cv greater than 0.95. With R2cv equal to 0.85, the MIR prediction of polyunsaturated FA could be used to screen the cow population. As previously published, infrared predictions of FA in fat are less accurate than those developed from FA content in milk (g/dL of milk) and no better results were obtained by using milk FA predictions if no corrections for bias and slope based on reference milk samples with known contents of FA were used. These results indicate the usefulness of equations with R2cv greater than 95% in milk payment systems and the usefulness of equations with R2cv greater than 75% for animal breeding purposes.
Interest in the fatty acid composition of dairy products is increasing; however, the measurement of fatty acids requires using gas-liquid chromatography. Although this method is suitable, it involves a time-consuming procedure, expensive reagents, and qualified staff. By comparison, the mid-infrared (MIR) spectrometry method could be a good alternative for assessing the fatty acid profile of dairy products. The objective of this study was to explore the calibration of MIR spectrometry for estimating fatty acid concentrations in milk and milk fat. Estimated concentrations in milk fat were less reliable than those for the same fatty acids in milk. Results also showed that when the fatty acid concentrations in milk increased, the efficiency of the infrared analysis method in predicting these values simultaneously increased. Selected prediction equations must have a high cross-validation coefficient of determination, a high ratio of standard error of cross-validation to standard deviation, and good repeatability of chromatographic data. Results from this study showed that the calibration equations predicting 12:0, 14:0, 16:0, 16:1cis-9, 18:1, and saturated and monounsaturated fatty acids in milk could be used. Thus, with its potential for use in regular milk recording, this infrared analysis method offers the possibility of assessing and improving the quality of milk produced. Indeed, it enables the fatty acid composition in milk to be estimated for each cow and the estimates to be used as indicator traits to determine the genetic values of underlying fatty acid concentrations. The knowledge of these genetic values
The main goal of this study was to develop, apply, and validate a new method to predict an indicator for CH4 eructed by dairy cows using milk mid-infrared (MIR) spectra. A novel feature of this model was the consideration of lactation stage to reflect changes in the metabolic status of the cow. A total of 446 daily CH4 measurements were obtained using the SF6 method on 142 Jersey, Holstein, and Holstein-Jersey cows. The corresponding milk samples were collected during these CH4 measurements and were analyzed using MIR spectroscopy. A first derivative was applied to the milk MIR spectra. To validate the novel calibration equation incorporating days in milk (DIM), 2 calibration processes were developed: the first was based only on CH4 measurements and milk MIR spectra (independent of lactation stage; ILS); the second included milk MIR spectra and DIM information (dependent on lactation stage; DLS) by using linear and quadratic modified Legendre polynomials. The coefficients of determination of ILS and DLS equations were 0.77 and 0.75, respectively, with standard error of calibration of 63g/d of CH4 for both calibration equations. These equations were applied to 1,674,763 milk MIR spectra from Holstein cows in the first 3 parities and between 5 and 365 DIM. The average CH4 indicators were 428, 444, and 448g/d by ILS and 444, 467, and 471g/d by DLS for cows in first, second, and third lactation, respectively. Behavior of the DLS indicator throughout the lactations was in agreement with the literature with values increasing between 0 and 100 DIM and decreasing thereafter. Conversely, the ILS indicator of CH4 emission decreased at the beginning of the lactation and increased until the end of the lactation, which differs from the literature. Therefore, the DLS indicator seems to better reflect biological processes that drive CH4 emissions than the ILS indicator. The ILS and DLS equations were applied to an independent data set, which included 59 respiration chamber measurements of CH4 obtained from animals of a different breed across a different production system. Results indicated that the DLS equation was much more robust than the ILS equation allowing development of indicators of CH4 emissions by dairy cows. Integration of DIM information into the prediction equation was found to be a good strategy to obtain biologically meaningful CH4 values from lactating cows by accounting for biological changes that occur throughout the lactation.
This study investigates the feasibility to predict individual methane (CH 4 ) emissions from dairy cows using milk mid-infrared (MIR) spectra. To have a large variability of milk composition, two experiments were conducted on 11 lactating Holstein cows (two primiparous and nine multiparous). The first experiment aimed to induce a large variation in CH 4 emission by feeding two different diets: the first one was mainly composed of fresh grass and sugar beet pulp and the second one of maize silage and hay. The second experiment consisted of grass and corn silage with cracked corn, soybean meal and dried pulp. For each milking period, the milk yields were recorded twice daily and a milk sample of 50 ml was collected from each cow and analyzed by MIR spectrometry. Individual CH 4 emissions were measured daily using the sulfur hexafluoride method during a 7-day period. CH 4 daily emissions ranged from 10.2 to 47.1 g CH 4 /kg of milk. The spectral data were transformed to represent an average daily milk spectrum (AMS), which was related to the recorded daily CH 4 data. By assuming a delay before the production of fermentation products in the rumen and their use to produce milk components, five different calculations were used: AMS at days 0, 0.5, 1, 1.5 and 2 compared with the CH 4 measurement. The equations were built using Partial Least Squares regression. From the calculated R 2 cv , it appears that the accuracy of CH 4 prediction by MIR changed in function of the milking days. In our experimental conditions, the AMS at day 1.5 compared with the measure of CH 4 emissions gave the best results. The R 2 and s.e. of the cross-validation were equal to 0.79 and 5.14 g of CH 4 /kg of milk. The multiple correlation analysis performed in this study showed the existence of a close relationship between milk fatty acid (FA) profile and CH 4 emission at day 1.5. The lower R 2 (R 2 5 0.76) obtained between FA profile and CH 4 emission compared with the one corresponding to the obtained calibration (R 2 c 5 0.87) shows the interest to apply directly the developed CH 4 equation instead of the use of correlations between FA and CH 4 . In conclusion, our preliminary results suggest the feasibility of direct CH 4 prediction from milk MIR spectra. Additional research has the potential to improve the calibrations even further. This alternative method could be useful to predict the individual CH 4 emissions at farm level or at the regional scale and it also could be used to identify low-CH 4 -emitting cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.