Gut microbiota is involved in the development of several chronic diseases, including diabetes, obesity, and cancer, through its interactions with the host organs. It has been suggested that the cross talk between gut microbiota and skeletal muscle plays a role in different pathological conditions, such as intestinal chronic inflammation and cachexia. However, it remains unclear whether gut microbiota directly influences skeletal muscle function. In this work, we studied the impact of gut microbiota modulation on mice skeletal muscle function and investigated the underlying mechanisms. We determined the consequences of gut microbiota depletion after treatment with a mixture of a broad spectrum of antibiotics for 21 days and after 10 days of natural reseeding. We found that, in gut microbiota-depleted mice, running endurance was decreased, as well as the extensor digitorum longus muscle fatigue index in an ex vivo contractile test. Importantly, the muscle endurance capacity was efficiently normalized by natural reseeding. These endurance changes were not related to variation in muscle mass, fiber typology, or mitochondrial function. However, several pertinent glucose metabolism markers, such as ileum gene expression of short fatty acid chain and glucose transporters G protein-coupled receptor 41 and sodium-glucose cotransporter 1 and muscle glycogen level, paralleled the muscle endurance changes observed after treatment with antibiotics for 21 days and reseeding. Because glycogen is a key energetic substrate for prolonged exercise, modulating its muscle availability via gut microbiota represents one potent mechanism that can contribute to the gut microbiota-skeletal muscle axis. Taken together, our results strongly support the hypothesis that gut bacteria are required for host optimal skeletal muscle function.
Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS) are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1) and Muscle RING (Really Interesting New Gene) Finger-1 (MuRF-1). We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ∼20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.
Low mitochondriogenesis is critical to explain loss of muscle function in aging and in the development of frailty. The aim of this work was to explain the mechanism by which mitochondriogenesis is decreased in aging and to determine to which extent it may be prevented by exercise training. We used aged rats and compared them with peroxisome proliferator-activated receptor-γ coactivator-1α deleted mice (PGC-1α KO). PGC-1α KO mice showed a significant decrease in the mitochondriogenic pathway in muscle. In aged rats, we found a loss of exercise-induced expression of PGC-1α, nuclear respiratory factor-1 (NRF-1), and of cytochrome C. Thus muscle mitochondriogenesis, which is activated by exercise training in young animals, is not in aged or PGC-1α KO ones. Other stimuli to increase PGC-1α synthesis apart from exercise training, namely cold induction or thyroid hormone treatment, were effective in young rats but not in aged ones. To sum up, the low mitochondrial biogenesis associated with aging may be due to the lack of response of PGC-1α to different stimuli. Aged rats behave as PGC-1α KO mice. Results reported here highlight the role of PGC-1α in the loss of mitochondriogenesis associated with aging and point to this important transcriptional coactivator as a target for pharmacological interventions to prevent age-associated sarcopenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.