The reelin gene encodes an extracellular protein that is crucial for neuronal migration in laminated brain regions. To gain insights into the functions of Reelin, we performed high-resolution in situ hybridization analyses to determine the pattern of reelin expression in the developing forebrain of the mouse. We also performed double-labeling studies with several markers, including calcium-binding proteins, GAD65/67, and neuropeptides, to characterize the neuronal subsets that express reelin transcripts. reelin expression was detected at embryonic day 10 and later in the forebrain, with a distribution that is consistent with the prosomeric model of forebrain regionalization. In the diencephalon, expression was restricted to transverse and longitudinal domains that delineated boundaries between neuromeres. During embryogenesis, reelin was detected in the cerebral cortex in Cajal-Retzius cells but not in the GABAergic neurons of layer I. At prenatal stages, reelin was also expressed in the olfactory bulb, and striatum and in restricted nuclei in the ventral telencephalon, hypothalamus, thalamus, and pretectum. At postnatal stages, reelin transcripts gradually disappeared from Cajal-Retzius cells, at the same time as they appeared in subsets of GABAergic neurons distributed throughout neocortical and hippocampal layers. In other telencephalic and diencephalic regions, reelin expression decreased steadily during the postnatal period. In the adult, there was prominent expression in the olfactory bulb and cerebral cortex, where it was restricted to subsets of GABAergic interneurons that co-expressed calbindin, calretinin, neuropeptide Y, and somatostatin. This complex pattern of cellular and regional expression is consistent with Reelin having multiple roles in brain development and adult brain function.
During their circumferential migration, the nuclei of inferior olivary neurons translocate within their axons until they reach the floor plate where they stop, although their axons have already crossed the midline to project to the contralateral cerebellum. Signals released by the floor plate, including netrin-1, have been implicated in promoting axonal growth and chemoattraction during axonal pathfinding in different midline crossing systems. In the present study, we report experiments that strongly suggest that the floor plate could also be involved in the migration of inferior olivary neurons. First, we show that the pattern of expression of netrin receptors DCC (for deleted in colorectal cancer), neogenin (a DCC-related protein), and members of the Unc5 family in wild-type mice is consistent with a possible role of netrins in directing the migration of precerebellar neurons from the rhombic lips. Second, we have studied mice deficient in netrin-1 production. In these mice, the number of inferior olivary neurons is remarkably decreased. Some of them are located ectopically along the migration stream, whereas the others are located medioventrally and form an atrophic inferior olivary complex: most subnuclei are missing. However, axons of the remaining olivary cell bodies located in the vicinity of the floor plate still succeed in entering their target, the cerebellum, but they establish an ipsilateral projection instead of the normal contralateral projection. In vitro experiments involving ablations of the midline show a fusion of the two olivary masses normally located on either side of the ventral midline, suggesting that the floor plate may function as a specific stop signal for inferior olivary neurons. These results establish a requirement for netrin-1 in the migration of inferior olivary neurons and suggest that it may function as a specific guidance cue for the initial steps of the migration from the rhombic lips and then later in the development of the normal crossed projection of the inferior olivary neurons. They also establish a requirement for netrin-1, either directly or indirectly, for the survival of inferior olivary neurons.
The mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 have been implicated in various physiological events, and specific targeting of these MAPKs could affect cell proliferation in many cell types. First, to evaluate the potential specific roles of these two MAPKs, we analyzed the mitogenic response in regenerating liver after partial hepatectomy (PH) and in primary culture of hepatocytes isolated from ERK1-deficient mice. We show that ERK1 knockout and wild-type (wt) cells replicate with the same kinetics after PH in liver, in vivo, and in primary cultures of hepatocytes, in vitro. Indeed, Cyclin D1 and Cdk1 appear to be expressed concomitantly in knockout and wt cells, highlighting that hepatocytes progress in the cell cycle independently of the presence of ERK1. Second, we specifically abolished ERK2 expression by RNA interference in mouse and rat hepatocytes. We investigated whether small interfering RNA (siRNA) targeting ERK2 could specifically inhibit its expression and interfere with the process of replication. In ERK1-deficient hepatocytes, silencing ERK2 expression by RNA interference and ERK2 activation by U0126 clearly demonstrate that DNA replication is regulated by an ERK2-dependent mechanism. Furthermore, in rat wt hepatocytes, whereas ERK2 targeting inhibits late G 1 and S phase progression, ERK1 silencing is devoid of any effect on cell proliferation, indicating that ERK1 cannot rescue ERK2 deficiency. Conclusion: Our results emphasize the importance of the MAPK cascade in hepatocyte replication and allow us to conclude that ERK2 is the key form involved in this regulation, in vivo and in vitro. T he Ras-dependent mitogen-activated protein kinase (MAPK) signaling cascade participates in control of cell fate, proliferation, and survival in various mammalian organs, including the liver. In adult rodent hepatocytes and regenerating liver, the MAPK MEK/ERK cascade plays a key role in regulating G 1 phase progression and consequently proliferation. 1,2 The ability to control precisely the order and timing of events is determinant for cell cycle regulation. 3,4 According to our previous data, the first part of G 1 is devoted to growth factor-dependent MEK/ERK-morphogenic events, whereas the mitogenic signal occurs in mid-G 1 phase. We showed that the sequential control mechanism of hepatocyte morphology and S phase entry by growth factor could involve successive activation of MEK2-ERK2 and then MEK1/MEK2-ERK1/ERK2 isoforms. 3 The process in early G 1 in relation to cytoskeletal reorganization induces hepatocyte spreading, making them permissive to DNA replication. In late G 1 phase, MEK1/MEK2-ERK1/ERK2 activation is associated with accumulation of Cyclin D1 and mitogen-dependent progression of hepatocytes to S phase. The central role of ERK2 in regulation was highlighted by the observation that ERK2 was preferentially activated in early and midlate G 1 phase. However, although ERK1 was slightly expressed and phosphorylated in early G 1 , a gradual
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.