Recent developments of three-dimensional printing of biomaterials (3D bioprinting) in medicine have been portrayed as demonstrating the potential to transform some medical treatments, including providing new responses to organ damage or organ failure. However, beyond the hype and before 3D bioprinted organs are ready to be transplanted into humans, several important ethical concerns and regulatory questions need to be addressed. This article starts by raising general ethical concerns associated with the use of bioprinting in medicine, then it focuses on more particular ethical issues related to experimental testing on humans, and the lack of current international regulatory directives to guide these experiments. Accordingly, this article (1) considers whether there is a limit as to what should be bioprinted in medicine; (2) examines key risks of significant harm associated with testing 3D bioprinting for humans; (3) investigates the clinical trial paradigm used to test 3D bioprinting; (4) analyses ethical questions of irreversibility, loss of treatment opportunity and replicability; (5) explores the current lack of a specific framework for the regulation and testing of 3D bioprinting treatments.
GI LB E RT . 1998. Differences in opacity between wells of a microtitre plate containing different volumes of inoculated growth medium reflected planktonic growth without any contribution from cells attached at the well surface. Simple algebra and a knowledge of the dependence of optical density upon sample path length (volume) for suspensions of differing cell density enables the generation of growth curves for attached populations (biofilms). In this manner, minimum inhibitory concentrations (MICs) were determined at various stages of growth (0-20 h), both for cells growing attached to the bases of the plate wells and, simultaneously, for cells growing in suspension above them. Biocides included cetrimide, polyhexamethylene biguanide, peracetic acid, phenoxyethanol and chloroxylenol. Results, expressed as planktonic:biofilm MIC ratios, showed susceptibility to change, not only as a function of attachment and biofilm formation, but also with respect to the nature of the chemical agent. In some instances, changes in susceptibility greater than twofold occurred immediately on attachment and could occur in the presence of biocide concentrations which exceeded the MIC.
Background: Surgical mortality data are collected routinely in high-income countries, yet virtually no low-or middle-income countries have outcome surveillance in place. The aim was prospectively to collect worldwide mortality data following emergency abdominal surgery, comparing findings across countries with a low, middle or high Human Development Index (HDI).Methods: This was a prospective, multicentre, cohort study. Self-selected hospitals performing emergency surgery submitted prespecified data for consecutive patients from at least one 2-week interval during July to December 2014. Postoperative mortality was analysed by hierarchical multivariable logistic regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.