Sendai virus (SeV) leader (le) and trailer (tr) RNAs are short transcripts generated during abortive antigenome and genome synthesis, respectively. Recombinant SeV (rSeV) that express tr-like RNAs from the leader region are non-cytopathic and, moreover, prevent wild-type SeV from inducing apoptosis in mixed infections. These rSeV thus appear to have gained a function. Here we report that tr RNA binds to a cellular protein with many links to apoptosis (TIAR) via the AU-rich sequence 5¢ UUUUAAAUUUU. Duplication of this AU-rich sequence alone within the le RNA confers TIAR binding on this le* RNA and a non-cytopathic phenotype to these rSeV in cell culture. Transgenic overexpression of TIAR during SeV infection promotes apoptosis and reverses the anti-apoptotic effects of le* RNA expression. Moreover, TIAR overexpression and SeV infection act synergistically to induce apoptosis. These short viral RNAs may act by sequestering TIAR, a multivalent RNA recognition motif (RRM) family RNA-binding protein involved in SeV-induced apoptosis. In this view, tr RNA is not simply a by-product of abortive genome synthesis, but is also an antigenome transcript that modulates the cellular antiviral response.
mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in tht the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template.
The genomic RNA of rabies virus is always complexed with the viral nucleoprotein (N). This N-RNA complex is the template for viral transcription and replication. The viral phosphoprotein (P) has two functions during the infection process: it binds through its carboxy-terminus to N in the N-RNA complex and at the same time with an amino-terminal domain to the polymerase and in this way fixes the polymerase to its template. The second function of P is to bind to newly produced N in the infected cell in order to prevent that N binds non-specifically and irreversibly to cellular RNA. In order to identify the part of the phosphoprotein that binds to N and keeps the latter soluble, we isolated the N-P complex, performed sequential protease digestions, and determined the identity of the remaining N and P peptides in the purified digested complex. Although the digestion steps removed short sequences of N, most of N remained intact and soluble, indicating that the overall structure was not affected. Most of P, including the carboxy-terminal N-RNA-binding domain, was removed during the first digestion step. N-terminal sequencing and mass spectrometry analysis identified a P peptide containing residues 4-40 that remained associated with N. Coexpression and coimmunoprecipitation experiments and yeast two-hybrid experiments showed that this peptide alone could bind to N in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.