Abstract. Drought indices based on precipitation are commonly used to identify and characterize droughts. Due to the general complexity of droughts, the comparison of index-identified events with droughts at different levels of the complete system, including soil humidity or river discharges, relies typically on model simulations of the latter, entailing potentially significant uncertainties. The present study explores the potential of using precipitation-based indices to reproduce observed droughts in the lower part of the Jinsha River basin (JRB), proposing an innovative approach for a catchment-wide drought detection and characterization. Two indicators, namely the Overall Drought Extension (ODE) and the Overall Drought Indicator (ODI), have been defined. These indicators aim at identifying and characterizing drought events on the basin scale, using results from four meteorological drought indices (standardized precipitation index, SPI; rainfall anomaly index, RAI; percent of normal precipitation, PN; deciles, DEC) calculated at different locations of the basin and for different timescales. Collected historical information on drought events is used to contrast results obtained with the indicators. This method has been successfully applied to the lower Jinsha River basin in China, a region prone to frequent and severe droughts. Historical drought events that occurred from 1960 to 2014 have been compiled and cataloged from different sources, in a challenging process. The analysis of the indicators shows a good agreement with the recorded historical drought events on the basin scale. It has been found that the timescale that best reproduces observed events across all the indices is the 6-month timescale.
Abstract. In a context where water management is becoming increasingly important, reliable seasonal forecasting of discharge in rivers is crucial for making decisions several months in advance. This paper explores the potential of seasonal forecasting of run-off volumes produced by ensemble streamflow forecasting using past climatology and comparing it to the more commonly used average of past discharge measurements. The seasonal forecast was obtained for the Arve and Rhone 10 rivers by simulation using the Routing System model for lead times of 30, 90 and 120 days. The initialization was performed on a validated simulation of 12 and 16 years for the Arve and Rhone rivers, respectively, obtained through long-term calibration. The performance was assessed by indicators called "accuracy" and "thinness". The normalized mean average error (NMAE) was used to compare the performance of the seasonal forecast with the average of the past measurements.After a bias correction of the seasonal forecast of the Rhone River with the observed run-off volumes during the different 15 lead times, the correlation of the median forecast with the measurements (accuracy) was larger than 0.55 for all lead times from April to July. The Arve River's accuracy was improved by disregarding the year 2007 member, leading to the floods of the 3 rd and 9 th of July, for lead times of 90 and 120 days. This resulting in the period of April to July having correlation accuracies higher than 0.5. For both rivers, the 80 % confidence interval of the seasonal forecast was relatively thin compared to the measurements (thinness) for the months of April to July. The NMAE was used to validate the range of 20 validity of the forecast. The correction of the forecast resulted in more months being favorable for seasonal forecasting for the Rhone River. The post-processing on the Arve River decreased the difference between the measurements and the forecast (NMAE). Further investigation should concentrate on dividing the meteorological datasets to produce a strong median forecast and confidence interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.