We consider the modified Einstein equations obtained in the framework of effective spherically symmetric polymer models inspired by Loop Quantum Gravity. When one takes into account the anomaly free point-wise holonomy quantum corrections, the modification of Einstein equations is parametrized by a function f (x) of one phase space variable. We solve explicitly these equations for a static interior black hole geometry and find the effective metric describing the trapped region, inside the black hole, for any f (x). This general resolution allows to take into account a standard ambiguity inherent to the polymer regularization: namely the choice of the spin j labelling the SU(2)-representation of the holonomy corrections. When j = 1/2, the function f (x) is the usual sine function used in the polymer litterature. For this simple case, the effective exterior metric remains the classical Schwarzschild's one but acquires modifications inside the hole. The interior metric describes a regular trapped region and presents strong similarities with the Reissner-Nordström metric, with a new inner horizon generated by quantum effects. We discuss the gluing of our interior solution to the exterior Schwarzschild metric and the challenge to extend the solution outside the trapped region due to covariance requirement. By starting from the anomaly free polymer regularization for inhomogeneous spherically symmetric geometry, and then reducing to the homogeneous interior problem, we provide an alternative treatment to existing polymer interior black hole models which focus directly on the interior geometry, ignoring covariance issue when introducing the polymer regularization.
We show that the rotating generalization of Hayward's non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co-and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr's black hole on observational grounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.