A precise packaging of the paternal genome during spermiogenesis is essential for fertilization and embryogenesis. Most of the nucleosomal DNA supercoiling must be eliminated in elongating spermatids (ES), and transient DNA strand breaks are observed that facilitate the process. Topoisomerases have been considered as ideal candidates for the removal of DNA supercoiling, but their catalytic activity, in the context of such a major chromatin remodeling, entails genetic risks. Using immunofluorescence, we confirmed that topoisomerase II beta (TOP2B) is the type II topoisomerase present in ES between steps 9 and 13. Interestingly, the detection of TOP2B was found coincident with detection of tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme known to resolve topoisomerase-mediated DNA damage. The presence of gamma-H2AX (also known as H2AFX) coincident with DNA strand breakage was also confirmed at these steps and indicates that a DNA damage response is triggered. Active DNA repair in ES was demonstrated using a fluorescent in situ DNA polymerase activity assay on squash preparations of staged tubules. In the context of haploid spermatids, any unresolved double-strand breaks, resulting from a failure in the rejoining process of TOP2B, must likely rely on the error-prone nonhomologous end joining, because homologous recombination cannot proceed in the absence of a sister chromatid. Because this process is part of the normal developmental program of the spermatids, dramatic consequences for the genomic integrity of the developing male gamete may arise should any alteration in the process occur.
Within the sperm nucleus the paternal genome remains functionally inert and protected following protamination. This is marked by a structural morphogenesis that is heralded by a striking reduction in nuclear volume. Despite these changes, both human and mouse spermatozoa maintain low levels of nucleosomes that appear non-randomly distributed throughout the genome. These regions may be necessary for organizing higher order genomic structure through interactions with the nuclear matrix. The promoters of this transcriptionally quiescent genome are differentially marked by modified histones that may poise downstream epigenetic effects. This notion is supported by increasing evidence that the embryo inherits these differing levels of chromatin organization. In concert with the suite of RNAs retained in the mature sperm they may synergistically interact to direct early embryonic gene expression. Irrespective, these features reflect the transcriptional history of spermatogenic differentiation. As such they may soon be utilized as clinical markers of male fertility. In this review we explore and discuss how this may be orchestrated.
A gene bank was constructed from Pseudomonas aeruginosa PAO1 and used to complement three P. aeruginosa elastase-deficient strains. One clone, pRF1, contained a gene which restored elastase production in two P. aeruginosa isolates deficient in elastase production (PA-E15 and PAO-E105). This gene also encoded production of elastase antigen and activity in Escherichia coli and is the structural gene for Pseudomonas elastase. A second clone, pHN13, contained a 20-kilobase (kb) EcoRI insert which was not related to the 8-kb EcoRI insert of pRF1 as determined by restriction analysis and DNA hybridization. A 2.2-kb SalI-HindIII fragment from pHN3 was subcloned into pUC18, forming pRB1822-1. Plasmid pRB1822-1 restored normal elastolytic activity to PAO-E64, a mutant for elastase activity. Clones derived from pHN13 failed to elicit elastase antigen or enzymatic activity in E. coli.
This paper reviews the possible origin of sperm DNA fragmentation and focuses on the nuclear events associated with spermiogenesis as a potential source of genetic instability and reduced fertilizing potential of the mature male gamete. Recent findings suggest a programmed DNA fragmentation and DNA damage response during the chromatin remodeling steps in spermatids. We also discuss the spermatid DNA repair mechanisms and the possible involvement of condensing proteins, such as transition proteins and protamines, in the process, as this DNA fragmentation is normally not found in late spermatids. We propose that alterations in the chromatin remodeling steps or DNA repair in elongating spermatids may lead to persistent DNA breaks. This vulnerable step of spermiogenesis may provide a clue to the etiology of sperm DNA fragmentation associated with infertility in humans. This vulnerability is further emphasized given the haploid character of spermatids that must resolve programmed double-stranded breaks by an error-prone DNA repair mechanism. Therefore, spermiogenesis has probably been overlooked as an important source of genetic instability.
The observation that PrP is present in the cytosol of some neurons and non-neuronal cells and that the N-terminal signal peptide is slightly inefficient has brought speculations concerning a possible function of the protein in the cytosol. Here, we show that cells expressing a cytosolic form of PrP termed cyPrP display a large juxtanuclear cytoplasmic RNA organelle. Although cyPrP spontaneously forms aggresomes, we used several mutants to demonstrate that the assembly of this RNA organelle is independent from cyPrP aggregation. Components of the organelle fall into three classes: mRNAs; proteins, including the RNAseIII family polymerase Dicer, the decapping enzyme Dcp1a, the DEAD-box RNA helicase DDX6, and the small nuclear ribonucleoprotein-associated proteins SmB/B'/N; and non-coding RNAs, including rRNA 5S, tRNAs, U1 small nuclear RNA, and microRNAs. This composition is similar to RNA granules or chromatoid bodies from germ cells, or planarian stem cells and neurons, which are large ribonucleoprotein complexes predicted to function in RNA processing and posttranscriptional gene regulation. The domain of PrP encompassing residues 30 to 49 is essential for the formation of the RNA particle. Our findings confirm the intriguing relation between PrP and RNA in cells, and underscore an unexpected function for cytosolic PrP: assembling a large RNA processing center which we have termed PrP-RNP for PrP-induced ribonucleoprotein particle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.