The spectral bidirectional scatter distribution function (BSDF) offers a complete description of the spectral and spatial optical characteristics of a material. Any gloss and color measurement can be related to a particular value of the BSDF, while accurate luminaire design with ray tracing software requires the BSDF of reflectors and filters. Many measuring instruments, each having particular advantages and limitations, have been reported in the literature, and an overview of these instruments is included. A measuring instrument that allows for an absolute determination of the spectral BSDF with a full three dimensional spatial coverage in both reflectance and transmittance mode, a broadband spectral coverage, a large dynamic range, a reasonable acquisition time, and a large sample illumination area is presented. The main instrument characteristics are discussed, and the measurement capabilities are illustrated.
The most straightforward way to assess the glossiness of a surface is by measuring the specular reflectance by use of a specular glossmeter. Although alternative measurement methods have been proposed, this is still the most frequently used instrumental measurement technique for gloss evaluation until today. However, due to both the multidimensional nature of gloss perception and to the initial purpose of a specular glossmeter only to judge the gloss differences of surfaces with similar appearance, specular glossmeter results do not seem to provide a reliable basis for estimating the gloss appearance of a surface. During the past decades, increased attention has been paid to understanding how the human visual system arrives at a particular sensation of surface gloss, and which factors influence this process. This article was established in response to these new insights, and provides the reader an overview of the most important developments and findings regarding gloss measurement and gloss perception over the past 15 years. With the ultimate goal to achieve a better correspondence between gloss measurement and gloss perception in the future, issues of alternative measurement methods are considered, and some suggestions for relevant future research are proposed. V
The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied. It was found that visual gloss appraisal did not correlate with instrumentally measured specular gloss; however, psychometric contrast seemed to be a much better correlate. It has become clear that not only the sample surface characteristics determine gloss perception: the illumination geometry could be an even more important factor.
Diffusors are widely used optical components having numerous applications. They are commonly used to homogenize light beams and to create particular intensity distributions. The angular scattering profile of bulk scattering diffusing materials is determined by three bulk scattering parameters that are, however, not commonly available. This hampers an accurate implementation of bulk diffusors in ray tracing simulations. In this paper, the bulk scattering parameters of a concentration series of milk diluted with water were determined with the inverse adding-doubling method. Using these values as input, the macroscopic angular scattering profile was simulated using ray tracing software. The simulation results were compared to experimental data, and a good agreement between measured and simulated data was found. The method was also proven to be successful when applied to commercial diffusors.
Gloss is a feature of visual appearance that arises from the directionally selective reflection of light incident on a surface. Especially when a distinct reflected image is perceptible, the luminance distribution of the illumination scene above the sample can strongly influence the gloss perception. For this reason, industrial glossmeters do not provide a satisfactory gloss estimation of high-gloss surfaces. In this study, the influence of the conditions of illumination on specular gloss perception was examined through a magnitude estimation experiment in which 10 observers took part. A light booth with two light sources was utilized: the mirror image of only one source being visible in reflection by the observer. The luminance of both the reflected image and the adjacent sample surface could be independently varied by separate adjustment of the intensity of the two light sources. A psychophysical scaling function was derived, relating the visual gloss estimations to the measured luminance of both the reflected image and the off-specular sample background. The generalization error of the model was estimated through a validation experiment performed by 10 other observers. In result, a metric including both surface and illumination properties is provided. Based on this metric, improved gloss evaluation methods and instruments could be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.