BackgroundCanine transmitted rabies kills an estimated 59,000 people annually, despite proven methods for elimination through mass dog vaccination. Challenges in directing and monitoring numerous remote vaccination teams across large geographic areas remain a significant barrier to the up-scaling of focal vaccination programmes to sub-national and national level. Smartphone technology (mHealth) is increasingly being used to enhance the coordination and efficiency of public health initiatives in developing countries, however examples of successful scaling beyond pilot implementation are rare. This study describes a smartphone app and website platform, “Mission Rabies App”, used to co-ordinate rabies control activities at project sites in four continents to vaccinate over one million dogs.MethodsMission Rabies App made it possible to not only gather relevant campaign data from the field, but also to direct vaccination teams systematically in near real-time. The display of user-allocated boundaries on Google maps within data collection forms enabled a project manager to define each team’s region of work, assess their output and assign subsequent areas to progressively vaccinate across a geographic area. This ability to monitor work and react to a rapidly changing situation has the potential to improve efficiency and coverage achieved, compared to regular project management structures, as well as enhancing capacity for data review and analysis from remote areas. The ability to plot the location of every vaccine administered facilitated engagement with stakeholders through transparent reporting, and has the potential to motivate politicians to support such activities.ResultsSince the system launched in September 2014, over 1.5 million data entries have been made to record dog vaccinations, rabies education classes and field surveys in 16 countries. Use of the system has increased year-on-year with adoption for mass dog vaccination campaigns at the India state level in Goa and national level in Haiti.ConclusionsInnovative approaches to rapidly scale mass dog vaccination programmes in a sustained and systematic fashion are urgently needed to achieve the WHO, OIE and FAO goal to eliminate canine-transmitted human deaths by 2030. The Mission Rabies App is an mHealth innovation which greatly reduces the logistical and managerial barriers to implementing large scale rabies control activities. Free access to the platform aims to support pilot campaigns to better structure and report on proof-of-concept initiatives, clearly presenting outcomes and opportunities for expansion. The functionalities of the Mission Rabies App may also be beneficial to other infectious disease interventions.
Canine rabies elimination can be achieved through mass vaccination of the dog population, as advocated by the WHO, OIE and FAO under the ‘United Against Rabies’ initiative. Many countries in which canine rabies is endemic are exploring methods to access dogs for vaccination, campaign structures and approaches to resource mobilization. Reviewing aspects that fostered success in rabies elimination campaigns elsewhere, as well as examples of largescale resource mobilization, such as that seen in the global initiative to eliminate poliomyelitis, may help to guide the planning of sustainable, scalable methods for mass dog vaccination. Elimination of rabies from the majority of Latin America took over 30 years, with years of operational trial and error before a particular approach gained the broad support of decision makers, governments and funders to enable widespread implementation. The endeavour to eliminate polio now enters its final stages; however, there are many transferrable lessons to adopt from the past 32 years of global scale-up. Additionally, there is a need to support operational research, which explores the practicalities of mass dog vaccination roll-out and what are likely to be feasible solutions at scale. This article reviews the processes that supported the scale-up of these interventions, discusses pragmatic considerations of campaign duration and work-force size and finally provides an examples hypothetical resource requirements for implementing mass dog vaccination at scale in Indian cities, with a view to supporting the planning of pilot campaigns from which expanded efforts can grow.
Dog-mediated rabies kills tens of thousands of people each year in India, representing one third of the estimated global rabies burden. Whilst the World Health Organization (WHO), World Organization for Animal Health (OIE) and the Food and Agriculture Organization of the United Nations (FAO) have set a target for global dog-mediated human rabies elimination by 2030, examples of large-scale dog vaccination programs demonstrating elimination remain limited in Africa and Asia. We describe the development of a data-driven rabies elimination program from 2013 to 2019 in Goa State, India, culminating in human rabies elimination and a 92% reduction in monthly canine rabies cases. Smartphone technology enabled systematic spatial direction of remote teams to vaccinate over 95,000 dogs at 70% vaccination coverage, and rabies education teams to reach 150,000 children annually. An estimated 2249 disability-adjusted life years (DALYs) were averted over the program period at 526 USD per DALY, making the intervention ‘very cost-effective’ by WHO definitions. This One Health program demonstrates that human rabies elimination is achievable at the state level in India.
Rabies is a devastating zoonotic disease causing nearly 60,000 deaths globally each year. The disease causes Malawi an economic loss of 13 million USD and kills almost 500 people annually. Domestic dogs are the main reservoir for rabies and vaccinating over 70% of the dog population is the most efficient method to reduce its incidence in both humans and canines. However, achieving such coverages is often difficult and depend on many geospatial factors. Rural and pastoral regions are considered difficult to vaccinate efficiently due to low dog densities, and reports of campaigns spanning large areas containing vastly different communities are lacking. This study describes a mass canine vaccination campaign covering rural and urban regions in southern Malawi. The campaign achieved an average vaccination coverage of 83.4% across 3 districts, and vaccinated over 89,000 dogs through a combined static point and door-to-door effort. A dog population of 107,574 dogs was estimated (dog:human ratio of 1:23). The canine population was found to be almost completely owned (99.2%) and mostly kept for security purposes (82.7%). The dogs were mainly adults, males, and not neutered. Regression analysis identified education level and proportion of young dogs as the only factors influencing (positively and negatively, respectively) whether vaccination coverage over 70% was achieved in a region, independently of variables such as population density or poverty. A second regression analysis was performed predicting absolute vaccination coverage. While education level and the proportion of confined dogs were associated with positive vaccination coverage, higher proportions of young animals and female dogs were associated with a decrease in coverage. This study confirms the feasibility of homogeneously vaccinating over 70% of the dogs in a large area including rural and urban communities. These findings can inform the logistics of future campaigns and might be used as a template to facilitate high-number, high-coverage vaccination campaigns to other regions in sub-Saharan Africa.
Background: Rabies is a fatal but preventable viral disease, which causes an estimated 59 000 human deaths globally every year. The vast majority of human rabies cases are attributable to bites from infected domestic dogs and consequently control of rabies in the dog population through mass vaccination campaigns is considered the most effective method of eliminating the disease. Achieving the WHO target of 70% vaccination coverage has proven challenging in low-resource settings such as Sub Saharan Africa, and lack of public awareness about rabies vaccination campaigns is a major barrier to their success. In this study we surveyed communities in three districts in Southern Malawi to assess the extent of and socioeconomic factors associated with mobile phone ownership and explore the attitudes of communities towards the use of short message service (SMS) to inform them of upcoming rabies vaccination clinics. Methods: This study was carried out between 1 October-3 December 2018 during the post-vaccination assessment of the annual dog rabies campaign in Blantyre, Zomba and Chiradzulu districts, Malawi. 1882 questionnaires were administered to households in 90 vaccination zones. The surveys gathered data on mobile phone ownership and use, and barriers to mobile phone access. A multivariable regression model was used to understand factors related to mobile phone ownership. Results: Most survey respondents owned or had use of a mobile phone, however there was evidence of an inequality of access, with higher education level, living in Blantyre district and being male positively associated with mobile phone ownership. The principal barrier to mobile phone ownership was the cost of the phone itself. Basic feature phones were most common and few owned smartphones. SMS was commonly used and the main reason for not using SMS was illiteracy. Attitudes to receiving SMS reminders about future rabies vaccination campaigns were positive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.