IR and NMR spectroscopy were used to determine the silanol content in the most common mesoporous ordered silicas: MCM-41, MCM-48, SBA-15 and SBA-16. In addition, a spray dried MCM-41 and an ethene bridged PMO are investigated. The results are compared with a commercial chromatographic silica (Nucleosil). The complete distribution of surface and bulk silanols, and of isolated, geminal and vicinal silanols for all these materials is presented. A distinction is made between the total silanol number and the reachable or surface silanol content. The latter is determined by controlled reactions with simple silanes. All mesoporous ordered silicas, and especially the thick walled SBA-type materials and the PMO contain a surprisingly high amount of total silanol sites, albeit that up to 90% of these silanols are buried inside the walls and are not reachable for small silanes.
A new, empirical approach is introduced to correct for the varying response of aerosol-based detectors with the varying composition of the mobile phase during gradient elution in HPLC. A Corona charged aerosol detector was used in the experiments. The detector is characterized by a nearly universal response at a given, constant mobile-phase composition for sufficiently nonvolatile analytes. A second pump was used to deliver an exactly inverse gradient compared to the analytical HPLC system, and both flows were mixed in a tee piece before introduction to the Corona detector. The approach proposed made it possible to extend the universal response from isocratic to gradient elution conditions in HPLC, vastly improving the usefulness of this detection technique. The constant response of the detector obtained in this way was first demonstrated in flow injection analysis. Very similar calibration curves were obtained for six sulfonamide drugs after mobile-phase compensation. The approach was also applied to gradient elution with excellent results. The data were characterized by good precision ranging from 4% RSD at 10 mg/L to 1.6% RSD at 780 mg/L. The average limit of detection with a 2-microL injection was 0.5 mg/L, corresponding to 1 ng injected on the column. The approach proposed allows quantification of unknown compounds, e.g., in pharmaceutical mixtures. Measurement of analytes at a relative concentration of 0.05% versus the main component is demonstrated.
The identification and quantitation of a wide range of lipids in complex biological samples is an essential requirement for the lipidomic studies. High-performance liquid chromatography-mass spectrometry (HPLC/MS) has the highest potential to obtain detailed information on the whole lipidome, but the reliable quantitation of multiple lipid classes is still a challenging task. In this work, we describe a new method for the nontargeted quantitation of polar lipid classes separated by hydrophilic interaction liquid chromatography (HILIC) followed by positive-ion electrospray ionization mass spectrometry (ESI-MS) using a single internal lipid standard to which all class specific response factors (RFs) are related to. The developed method enables the nontargeted quantitation of lipid classes and molecules inside these classes in contrast to the conventional targeted quantitation, which is based on predefined selected reaction monitoring (SRM) transitions for selected lipids only. In the nontargeted quantitation method described here, concentrations of lipid classes are obtained by the peak integration in HILIC chromatograms multiplied by their RFs related to the single internal standard (i.e., sphingosyl PE, d17:1/12:0) used as common reference for all polar lipid classes. The accuracy, reproducibility and robustness of the method have been checked by various means: (1) the comparison with conventional lipidomic quantitation using SRM scans on a triple quadrupole (QqQ) mass analyzer, (2) (31)P nuclear magnetic resonance (NMR) quantitation of the total lipid extract, (3) method robustness test using subsequent measurements by three different persons, (4) method transfer to different HPLC/MS systems using different chromatographic conditions, and (5) comparison with previously published results for identical samples, especially human reference plasma from the National Institute of Standards and Technology (NIST human plasma). Results on human plasma, egg yolk and porcine liver extracts are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.