International audienceWe describe a method for constructing characters of combinatorial Hopf algebras by means of integrals over certain polyhedral cones. This is based on ideas from resurgence theory, in particular on the construction of well-behaved averages induced by diffusion processes on the real line. We give several interpretations and proofs of the main result in terms of noncommutative symmetric and quasisymmetric functions, as well as generalizations involving matrix quasi-symmetric functions. The interpretation of noncommutative symmetric functions as alien operators in resurgence theory is also discussed, and a new family of Lie idempotents of descent algebras is derived from this interpretation
The functional equation defining the free cumulants in free probability is lifted successively to the noncommutative Faà di Bruno algebra, and then to the group of a free operad over Schröder trees. This leads to new combinatorial expressions, which remain valid for operator-valued free probability. Specializations of these expressions give back Speicher's formula in terms of noncrossing partitions, and its interpretation in terms of characters due to Ebrahimi-Fard and Patras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.