SUMMARY
Hedgehog (Hh) proteins regulate important developmental processes including cell proliferation and differentiation. While Patched acts as the main Hh receptor, in Drosophila, Hh signaling absolutely requires the additional Hh-binding proteins Ihog and Boi. Here we show that, unexpectedly, cerebellar granule neuron progenitors (CGNPs) lacking Boc and Cdon, the vertebrate orthologs of Ihog and Boi, still proliferate in response to Hh. This is because in their absence, Gas1, a Hh-binding protein not present in Drosophila, mediates Hh signaling. Consistently, only CGNPs lacking all three molecules Boc, Cdon, and Gas1 have a complete loss of Hh-dependent proliferation. In a complementary manner, we find that a mutated Hh ligand which binds Patched1 but neither Boc, Cdon, nor Gas1 cannot activate Hh signaling. Together, this demonstrates an absolute requirement for Boc, Cdon, and Gas1 in Hh signaling and reveals a distinct requirement for ligand-binding components that distinguishes the vertebrate and invertebrate Hh receptor systems.
Sonic hedgehog (Shh) and its main receptor Patched (Ptc) are implicated in both neural development and tumorigenesis1, 2. Beside the classic morphogen activity of Shh, Shh is also a survival factor3, 4. Along this line, Ptc has been shown to function as a dependence receptor, inducing apoptosis in the absence of Shh, while its pro-apoptotic activity is blocked in Shh presence5. Here we show that, in the absence of its ligand, Ptc interacts with the adaptor protein DRAL/FHL2. DRAL/FHL2 is required for the pro-apoptotic activity of Ptc both in immortalized cells and during neural tube development in chick embryo. We demonstrate that, in the absence of Shh, Ptc recruits a protein complex that includes DRAL, the CARD containing domain proteins TUCAN or NALP1 and the apical caspase-9. Ptc triggers caspase-9 activation and enhances cell death via a caspase-9-dependent mechanism. Thus, we propose that, upon absence of its ligand Shh, the dependence receptor Ptc serves as the anchor for a caspase-activating complex that includes DRAL, a CARD domain containing protein and caspase-9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.