For most membrane proteins, the transmembrane domain (TMD) is more than just an anchor to the membrane. The TMDs of hepatitis C virus (HCV) envelope proteins E1 and E2 are extreme examples of the multifunctionality of such membrane-spanning sequences. Indeed, they possess a signal sequence function in their C-terminal half, play a major role in endoplasmic reticulum localization of E1 and E2, and are potentially involved in the assembly of these envelope proteins. These multiple functions are supposed to be essential for the formation of the viral envelope. As for the other viruses of the family Flaviviridae, these anchor domains are composed of two stretches of hydrophobic residues separated by a short segment containing at least one fully conserved charged residue. Replacement of these charged residues by an alanine in HCV envelope proteins led to an alteration of all of the functions performed by their TMDs, indicating that these functions are tightly linked together. These data suggest that the charged residues of the TMDs of HCV glycoproteins play a key role in the formation of the viral envelope.
Keratinocyte monolayers, cultured in immersed conditions, constitute a frequently used in vitro model system to study keratinocytes behaviour in response to environmental assaults. However, monolayers lack the keratinocyte terminal differentiation and the organization of the epidermal tissue, which are observed in vivo. Advancements of in vitro techniques were used to reconstruct three-dimensional equivalents that mimic human epidermis in terms of layering, differentiation and barrier function. Here, we update a published method and illustrate the progressive morphogenesis responsible for in vitro reconstruction. The analysis of cell proliferation, expression of differentiation markers and barrier efficacy demonstrate the excellent similarity of the reconstructed tissue with normal human epidermis. Availability of epidermal tissue during its reconstruction phase in culture appears crucial for studies intending to challenge the barrier function.
Epidermal homeostasis and repair of the skin barrier require that epidermal keratinocytes respond to alterations of their environment. We report that cellular stress with methyl-beta-cyclodextrin (MBCD), a molecule that extracts membrane cholesterol and thereby disrupts the structure of lipid rafts, strongly induces the synthesis of heparin-binding EGF-like growth factor (HB-EGF) in keratinocytes through the activation of p38 mitogen-activated protein kinase. Interesting parallels between lipid raft disruption and oxidative stress can be drawn as hydrogen peroxide induces p38 activation and HB-EGF synthesis in keratinocytes. Consistent with other studies, we show increased HB-EGF expression in keratinocytes located at the margin of wounded skin areas. Analyzing cultured keratinocytes exposed to rhHB-EGF, we report increased HB-EGF mRNA levels and alterations in the expression of differentiation markers. Interestingly, identical alterations in differentiation markers are shown to occur in vivo at the wound margin and in HB-EGF-treated cultures. In addition, in vitro sectioning of skin samples also induces the expression of HB-EGF at the border of the incisions. Altogether, our data suggest that expression of HB-EGF is a marker of the keratinocyte's response to a challenging environment and demonstrate that this growth factor alters the phenotype of keratinocytes in a manner similar to that observed during epidermal repair.
Although human papillomavirus (HPV) DNA is detected in the majority of squamous intraepithelial lesions (SIL) and carcinoma (SCC) of the uterine cervix, the persistence or progression of cervical lesions suggest that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most SIL show quantitative and functional alterations of Langerhans cells (LC). The aim of this study was to determine whether prostaglandins (PG) may affect LC density in the cervical (pre)neoplastic epithelium. We first demonstrated that the epithelial expression of PGE(2) enzymatic pathways, including cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1), is higher in SIL and SCC compared to the normal exocervical epithelium and inversely correlated to the density of CD1a-positive LC. By using cell migration assays, we next showed that the motility of immature dendritic cells (DC) and DC partially differentiated in vitro in the presence of PGE(2) are differentially affected by PGE(2). Immature DC had a lower ability to migrate in the presence of PGE(2) compared to DC generated in vitro in the presence of PGE(2). Finally, we showed that PGE(2) induced a cytokine production profile and phenotypical features of tolerogenic DC, suggesting that the altered expression of PGE(2) enzymatic pathways may promote the cervical carcinogenesis by favouring (pre)cancer immunotolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.