Lymphatic filariasis and onchocerciasis are neglected tropical diseases (NTDs) targeted for elimination by mass (antifilarial) drug administration. These drugs are predominantly active against the microfilarial progeny of adult worms. New drugs or combinations are needed to improve patient therapy and to enhance the effectiveness of interventions in persistent hotspots of transmission. Several therapies and regimens are currently in (pre-)clinical testing. Clinical trial simulators (CTSs) project patient outcomes to inform the design of clinical trials but have not been widely applied to NTDs, where their resource-saving payoffs could be highly beneficial. We demonstrate the utility of CTSs using our individual-based onchocerciasis transmission model (EPIONCHO-IBM) that projects trial outcomes of a hypothetical macrofilaricidal drug. We identify key design decisions that influence the power of clinical trials, including participant eligibility criteria and post-treatment follow-up times for measuring infection indicators. We discuss how CTSs help to inform target product profiles.
Emodepside is an anthelmintic, originally developed for veterinary use. We investigated in healthy subjects the safety, and pharmacokinetics of a liquid service formulation (LSF) and immediate release (IR) tablet of emodepside in 2 randomised, parallel-group, placebo-controlled, Phase I studies.Methods: Seventy-nine subjects in 10 cohorts in the single ascending dose study and 24 subjects in 3 ascending-dose cohorts in the multiple ascending dose study were enrolled. Emodepside as LSF was administered orally as single 1-40-mg doses and for 10 days as 5 or 10 mg once daily and 10-mg twice daily doses, respectively.Pharmacokinetics and safety were assessed up to 21 and 30 days, respectively. In addition, IR tablets containing 5 or 20 mg emodepside were tested in the single ascending dose study.Results: Emodepside as LSF was rapidly absorbed under fasting conditions, with dose-proportional increase in plasma concentrations at doses from 1 to 40 mg.Terminal half-life was > 500 hours. In the fed state, emodepside was absorbed more slowly but overall plasma exposure was not significantly affected. Compared to the LSF, the rate and extent of absorption was significantly lower with the tablets.Conclusions: Overall, emodepside had acceptable safety and tolerability profiles, no major safety concerns, after single oral administration of 20 mg as LSF and after multiple oral administration over 10 days at 5 and 10 mg OD and at 10 mg twice daily. For further clinical trials, the development of a tablet formulation overcoming the limitations observed in the present study with the IR tablet formulation is considered.
Drug-based interventions are at the heart of global efforts to reach elimination as a public health problem (trachoma, soil-transmitted helminthiases, schistosomiasis, lymphatic filariasis) or elimination of transmission (onchocerciasis) for five of the most prevalent neglected tropical diseases tackled via the World Health Organization preventive chemotherapy strategy. While for some of these diseases there is optimism that currently available drugs will be sufficient to achieve the proposed elimination goals, for others—particularly onchocerciasis—there is a growing consensus that novel therapeutic options will be needed. Since in this area no high return of investment is possible, minimizing wasted money and resources is essential. Here, we use illustrative results to show how mathematical modelling can guide the drug development pathway, yielding resource-saving and efficiency payoffs, from the refinement of target product profiles and intended context of use, to the design of clinical trials.
Aims: Emodepside is an anthelmintic, originally developed for veterinary use. We investigated the safety, pharmacokinetics, relative bioavailability and dose linearity of four oral formulations of emodepside in healthy male subjects. Methods: Three randomised, parallel-group, controlled, Phase I studies were conducted using various oral formulations, involving 79 subjects in ten cohorts in the single-ascending-dose study, 24 subjects in three ascending-dose cohorts in the multiple-ascending-dose study and 77 subjects in seven different cohorts in the relative bioavailability study. Pharmacokinetics and safety assessments were performed up to 21, 30 and 7 days, respectively. Results: As a liquid service formulation, emodepside was rapidly absorbed under fasting conditions, with dose-proportional increases in plasma concentrations at doses from 1 mg to 40 mg. The half-life during the first 24 hours after dosing was around 11 hours, followed by a terminal elimination half-life > 500 hours. Emodepside was less bioavailable in the fed state. The rate of absorption was slower and Cmax was lower with the amorphous solid dispersion tablets compared to the liquid service formulation. Emodepside was well tolerated overall with no major safety concerns. Conclusion: These Phase I studies with various dosage forms revealed a pharmacokinetic profile suggesting good tissue distribution of emodepside and a long terminal half-life. A 15 mg dose with the gastrosoluble tablet is predicted to provide exposure that will achieve the target concentration for clinical efficacy. These data enabled us to select a field-adapted tablet formulation that will open the way for further clinical development of emodepside in individuals with onchocerchiasis.
Background To accelerate the progress towards onchocerciasis elimination, a macrofilaricidal drug that kills the adult parasite is urgently needed. Emodepside has shown macrofilaricidal activity against a variety of nematodes and is currently under clinical development for the treatment of onchocerciasis. The aims of this study were i) to characterize the population pharmacokinetic properties of emodepside, ii) to link its exposure to adverse events in healthy volunteers, and iii) to propose an optimized dosing regimen for a planned phase II study in onchocerciasis patients. Methodology / Principal findings Plasma concentration-time profiles and adverse event data were obtained from 142 subjects enrolled in three phase I studies, including a single-dose, and a multiple-dose, dose-escalation study as well as a relative bioavailability study. Nonlinear mixed-effects modeling was used to evaluate the population pharmacokinetic properties of emodepside. Logistic regression modeling was used to link exposure to drug-related treatment-emergent adverse events (TEAEs). Emodepside pharmacokinetics were well described by a transit-absorption model, followed by a 3-compartment disposition model. Body weight was included as an allometric function and both food and formulation had a significant impact on absorption rate and relative bioavailability. All drug-related TEAEs were transient, and mild or moderate in severity. An increase in peak plasma concentration was associated with an increase in the odds of experiencing a drug-related TEAE of interest. Conclusions/Significance Pharmacokinetic modeling and simulation was used to derive an optimized, body weight-based dosing regimen, which allows for achievement of extended emodepside exposures above target concentrations while maintaining acceptable tolerability margins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.