Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.
Thyroid hormone is necessary for normal development of the central nervous system, as shown by the severe mental retardation syndrome affecting hypothyroid patients with low levels of active thyroid hormone. The postnatal defects observed in hypothyroid mouse cerebellum are recapitulated in mice heterozygous for a dominant-negative mutation of Thra, the gene encoding the ubiquitous TRα1 receptor. Using CRE/loxP-mediated conditional expression approach, we found that this mutation primarily alters the differentiation of Purkinje cells and Bergmann glia, two cerebellumspecific cell types. These primary defects indirectly affect cerebellum development in a global manner. Notably, the inward migration and terminal differentiation of granule cell precursors is impaired. Therefore, despite the broad distribution of its receptors, thyroid hormone targets few cell types that exert a predominant role in the network of cellular interactions that govern normal cerebellum maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.