This review covers the preparation, characterization, properties, and applications of methylcelluloses (MC). In particular, the influence of different chemical modifications of cellulose (under both heterogeneous and homogeneous conditions) is discussed in relation to the physical properties (solubility, gelation) of the methylcelluloses. The molecular weight (MW) obtained from the viscosity is presented together with the nuclear magnetic resonance (NMR) analysis required for the determination of the degree of methylation. The influence of the molecular weight on the main physical properties of methylcellulose in aqueous solution is analyzed. The interfacial properties are examined together with thermogelation. The surface tension and adsorption at interfaces are described: surface tension in aqueous solution is independent of molecular weight but the adsorption at the solid interface depends on the MW, the higher the MW the thicker the polymeric layer adsorbed. The two-step mechanism of gelation is confirmed and it is shown that the elastic moduli of high temperature gels are not dependent on the molecular weight but only on polymer concentration. Finally, the main applications of MC are listed showing the broad
OPEN ACCESSPolymers 2015, 7 778 range of applications of these water soluble cellulose derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.