The several algebraic approaches to graph transformation proposed in the literature all ensure that if an item is preserved by a rule, so are its connections with the context graph where it is embedded. But there are applications in which it is desirable to specify different embeddings. For example when cloning an item, there may be a need to handle the original and the copy in different ways. We propose a conservative extension of classical algebraic approaches to graph transformation, for the case of monic matches, where rules allow one to specify how the embedding of preserved items should be carried out.This work has been partly funded by projects CLIMT (ANR/(ANR-11-BS02-016), TGV (CNRS-INRIA-FAPERGS/(156779 and 12/0997-7)), VeriTeS (CNPq 485048/2012-4 and 309981/2014-0), PEPSégalité (CNRS).
Some recent algebraic approaches to graph transformation include a pullback construction involving the match, that allows one to specify the cloning of items of the host graph. We pursue further this trend by proposing the Pullback-Pushout (pb-po) Approach, where we combine smoothly the classical modifications to a host graph specified by a rule (a span of graph morphisms) with the cloning of structures specified by another rule. The approach is shown to be a conservative extension of agree (and thus of the sqpo approach), and we show that it can be extended with standard techniques to attributed graphs. We discuss conditions to ensure a form of locality of transformations, and conditions to ensure that the attribution of transformed graphs is total. ? This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d'avenir and by the Brazilian agency CNPq.
Abstract. Copying, or cloning, is a basic operation used in the specification of many applications in computer science. However, when dealing with complex structures, like graphs, cloning is not a straightforward operation since a copy of a single vertex may involve (implicitly) copying many edges. Therefore, most graph transformation approaches forbid the possibility of cloning. We tackle this problem by providing a framework for graph transformations with cloning. We use attributed graphs and allow rules to change attributes. These two features (cloning/changing attributes) together give rise to a powerful formal specification approach. In order to handle different kinds of graphs and attributes, we first define the notion of attributed structures in an abstract way. Then we generalise the sesqui-pushout approach of graph transformation in the proposed general framework and give appropriate conditions under which attributed structures can be transformed. Finally, we instantiate our general framework with different examples, showing that many structures can be handled and that the proposed framework allows one to specify complex operations in a natural way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.