In modern production environments, advanced and intelligent process monitoring strategies are required to enable an unambiguous diagnosis of the process situation and thus of the final component quality. In addition, the ability to recognize the current state of product quality in real-time is an important prerequisite for autonomous and self-improving manufacturing systems. To address these needs, this study investigates a novel ensemble deep learning architecture based on convolutional neural networks (CNN), gated recurrent units (GRU) combined with high-performance classification algorithms such as k-nearest neighbors (kNN) and support vector machines (SVM). The architecture uses spatio-temporal features extracted from infrared image sequences to locate critical welding defects including lack of fusion (false friends), sagging, lack of penetration, and geometric deviations of the weld seam. In order to evaluate the proposed architecture, this study investigates a comprehensive scheme based on classical machine learning methods using manual feature extraction and state-of-the-art deep learning algorithms. Optimal hyperparameters for each algorithm are determined by an extensive grid search. Additional work is conducted to investigate the significance of various geometrical, statistical and spatio-temporal features extracted from the keyhole and weld pool regions. The proposed method is finally validated on previously unknown welding trials, achieving the highest detection rates and the most robust weld defect recognition among all classification methods investigated in this work. Ultimately, the ensemble deep neural network is implemented and optimized to operate on low-power embedded computing devices with low latency (1.1 ms), demonstrating sufficient performance for real-time applications.
An effective process monitoring strategy is a requirement for meeting the challenges posed by increasingly complex products and manufacturing processes. To address these needs, this study investigates a comprehensive scheme based on classical machine learning methods, deep learning algorithms, and feature extraction and selection techniques. In a first step, a novel deep learning architecture based on convolutional neural networks (CNN) and gated recurrent units (GRU) is introduced to predict the local weld quality based on mid-wave infrared (MWIR) and near-infrared (NIR) image data. The developed technology is used to discover critical welding defects including lack of fusion (false friends), sagging and lack of penetration, and geometric deviations of the weld seam. Additional work is conducted to investigate the significance of various geometrical, statistical, and spatio-temporal features extracted from the keyhole and weld pool regions. Furthermore, the performance of the proposed deep learning architecture is compared to that of classical supervised machine learning algorithms, such as multi-layer perceptron (MLP), logistic regression (LogReg), support vector machines (SVM), decision trees (DT), random forest (RF) and k-Nearest Neighbors (kNN). Optimal hyperparameters for each algorithm are determined by an extensive grid search. Ultimately, the three best classification models are combined into an ensemble classifier that yields the highest detection rates and achieves the most robust estimation of welding defects among all classifiers studied, which is validated on previously unknown welding trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.