Defective interfering (DI) genomes, or defective viral genomes (DVGs), are truncated viral genomes generated during replication of most viruses, including live viral vaccines. Among these, "panhandle" or copy-back (cb) and "hairpin" or snap-back (sb) DI genomes are generated during RNA virus replication. 5' cb/sb DI genomes are highly relevant for viral pathogenesis since they harbor immunostimulatory properties that increase virus recognition by the innate immune system of the host. We have developed , a user-friendly and freely available program that identifies and characterizes cb/sb genomes from next-generation sequencing (NGS) data. confirmed the presence of 5' cb genomes in cells infected with measles virus (MV). also identified a novel 5' cb genome, as well as a variety of 3' cb/sb genomes whose existence had not previously been detected by conventional approaches in MV-infected cells. The presence of these novel cb/sb genomes was confirmed by RT-qPCR and RT-PCR, validating the ability of to reveal the landscape of DI genome population in infected cell samples. Performance assessment using different experimental and simulated data sets revealed the robust specificity and sensitivity of We propose as a universal tool for the unbiased detection of DI viral genomes, including 5' cb/sb DI genomes, in NGS data.
Infectious disease epidemics match wars and natural disasters in their capacity to threaten lives and damage economies. Like SARS previously and Zika recently, the Ebola crisis in 2015 showed how vulnerable the world is to these epidemics, with over 11,000 people dying in the outbreak. In addition to causing immense human suffering, these epidemics particularly affect low- and middle-income countries. Many of these deadly infectious diseases that have epidemic potential can become global health emergencies in the absence of effective vaccines. But very few vaccines against these threats have been developed to create proven medical products. The measles vaccine is an efficient, live attenuated, replicating virus that has been safely administered to 2 billion children over the last 40 years, affording life-long protection after a single dose. Taking advantage of these characteristics, this attenuated virus was transformed into a versatile chimeric or recombinant vaccine vector with demonstrated proof-of-principle in humans and a preclinical track record of rapid adaptability and effectiveness for a variety of pathogens. Clinical trials have shown the safety and immunogenicity of this vaccine platform in individuals with preexisting immunity to measles. This review describes the potential of this platform to develop new vaccines against emerging viral diseases.
Flaviviruses, such as dengue (DENV), West Nile (WNV), yellow fever (YFV) and Zika (ZIKV) viruses, are mosquito-borne pathogens that present a major risk to global public health. To identify host factors that promote flavivirus replication, we performed a genome-wide gain-of-function cDNA screen for human genes that enhance the replication of flavivirus reporter particles in human cells. The screen recovered seventeen potential host proteins that promote viral replication, including the previously known dolichyl-diphosphooligosaccharide--protein glycosyltransferase non-catalytic subunit (DDOST). Using silencing approaches, we validated the role of four candidates in YFV and WNV replication: ribosomal protein L19 (RPL19), ribosomal protein S3 (RPS3), DDOST and importin 9 (IPO9). Applying a panel of virological, biochemical and microscopic methods, we validated further the role of RPL19 and DDOST as host factors required for optimal replication of YFV, WNV and ZIKV. The genome-wide gain-of-function screen is thus a valid approach to advance our understanding of flavivirus replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.