Feeding experiments are standard tools in the pollinator risk assessment. The design (Oomen et al 1992) was developed to test insect growth regulators and herbicides. In recent years there was an update (Lückmann & Schmitzer 2015) on the outline in order to also focus on the advantage of different rates making a dose response design possible where exposure levels are known. Additionally, this design gives the possibility to test different rates for honey bee colonies foraging in the same landscape.The main objective of the experiment presented here was to determine the natural variability of foragers losses of hives fed with a sub-lethal neonicotinoid concentration compared to an untreated control. Other objectives were to see if the neurotoxic exposure results in any observable sub-lethal effects and to find out if losses can be correlated to hive development. This was assessed with traditional methods and a novel, visual monitoring device.
in German Honigbienen sind nützliche Bio-Indikatoren. Sie besitzen ein großes Potenzial, Licht in das Ausmaß und die Wechselwirkungen der Faktoren zu bringen, die den Rückgang der Insektenzahl beeinflussen. Dieses Potenzial wurde bisher noch nicht vollständig ausgeschöpft, da die Produktion zuverlässiger Daten aufwendige und arbeitsintensive Studiendesigns erfordert, die mit hohen Kosten verbunden sind. Ein neuartiges, auf künstlicher Intelligenz (KI) basierendes visuelles Monitoringsystem könnte eine teilweise Automatisierung der Datenerfassung über Aktivität, Sammelbienenverlust und Beeinträchtigungen des zentralen Nervensystems ermöglichen. Die Möglichkeit, Merkmale aus den Bilddaten zu extrahieren, könnte darüber hinaus zukünftig auch eine Bewertung des Polleneintrags und eine Unterscheidung von toten Bienen, Drohnen und Arbeitsbienen sowie anderen Insekten wie Wespen oder Hornissen ermöglichen. Die Technologie wurde in verschiedenen Studien hinsichtlich ihrer Skalierbarkeit und ihrer Fähigkeit, bewegungs-und merkmalsbezogene Informationen zu extrahieren, validiert. Die Möglichkeiten wurden hinsichtlich ihres Potenzials analysiert, Fortschritte sowohl in der ökotoxikologischen Forschung als auch im Monitoring von Bestäuber-Lebensräumen zu ermöglichen.
Abstract in EnglishHoney bees are valuable bio-indicators. As such, they hold a vast potential to help shed light on the extent and interdependencies of factors influencing the decline in the number of insects. However, to date this potential has not yet been fully leveraged, as the production of reliable data requires large-scale study designs, which are very labour intensive and therefore costly.A novel Artificial Intelligence (AI) based visual monitoring system could enable the partial automatization of data collection on activity, forager loss and impairment of the central nervous system. The possibility to extract features from image data could prospectively also allow an assessment of pollen intake and a differentiation of dead bees, drones and worker bees as well as other insects such as wasps or hornets.The technology was validated in different studies with regards to its scalability and its ability to extract motion and feature related information.The prospective possibilities were analyzed regarding their potential to enable advances both within ecotoxicological research and the monitoring of pollinator habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.