We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15 weeks one of the four isoproteic diets containing fish oil (FO) or CO as fat source (FS), incorporated at 5 % (low fat, LF) or 15 % (high fat, HF). Fat level or FS did not modify food intake (g/kg 0·8 per d), despite higher intestinal cholecystokinin-T mRNA in trout fed the HF-FO diet. The HF diets relative to the LF ones induced higher growth and adiposity, whereas the replacements of FO by CO resulted in similar growth and adiposity. This, together with the substantial retention of C12 (57 % of intake), suggests the relatively low oxidation of ingested C12. The down-regulation of carnitine palmitoyl-transferase-1 (CPT-1) confirms the minor dependency of mediumchain fatty acids (MCFA) on CPT-1 to enter the mitochondria. However, MCFA did not up-regulate mitochondrial oxidation evaluated using hepatic hydroxyacyl-CoA dehydrogenase as a marker, in line with their high retention in body lipids. At a low lipid level, MCFA increased mRNA levels of fatty acid synthase, elongase and stearoyl-CoA desaturase in liver, showing the hepatic activation of fatty acid synthesis pathways by MCFA, reflected by increased 16 : 0, 18 : 0, 16 : 1, 18 : 1 body levels. The high capacity of trout to incorporate and transform C12, rather than to readily oxidise C12, contrasts with data in mammals and may explain the absence of a satiating effect of CO in rainbow trout.Key words: Medium-chain fatty acids: Coconut oil: Fatty acid oxidation: Satiety Medium-chain fatty acids (MCFA), which are the principal constituents of medium-chain TAG (MCT), are saturated with a chain length of six to twelve carbons (1,2) . In mammalian vertebrates, the consumption of MCT has been reported to decrease food intake (3 -5) and to reduce fat deposition (6,7) . The satiety effect of MCT compared with long-chain TAG has been attributed to the metabolic discrimination in fatty acid utilisation. Long-chain fatty acids (LCFA), after being packed into chylomicrons, enter the lymphatic system that favours their uptake by peripheral tissues such as adipose tissues and muscle (1,2) . In contrast, MCFA can enter directly into the portal vein that accelerates their uptake and oxidation by the liver. As a result, minor amounts of MCFA are recovered in the different tissues (8,9) . Moreover, the transport of MCFA across the mitochondrial membrane does not require carnitine palmitoyltransferase-1 (CPT-1) (10) , considered as a rate-limiting step in the mitochondrial oxidation of LCFA.In this context, the satiating effect of MCFA has been explained by their rapid oxidation and the limited 'storage' of MCFA by the organism. The possible link between oxidative metabolism, satiety and food intake has been documented in rats and human subjects (11 -13) , but has been litt...