The influence of a film-forming additive, propargyl methanesulfonate (PMS), on electrochemical performance and electrode/electrolyte interface composition of LiFePO 4 /graphite Li-ion batteries has been studied. Combined use of in-house X-ray photoelectron spectroscopy (XPS) and soft and hard X-ray photoelectron spectroscopy (PES) enabled nondestructive depth profiling at four different probing depths in the 2− 50 nm range. Cells cycled with PMS and LiPF 6 in ethylene carbonate/diethyl carbonate (EC/DEC) were compared to a reference sample cycled without PMS. In the first cycle, PMS cells showed a higher irreversible capacity, which is explained by formation of a thicker solid electrolyte interphase (SEI). After three cycles, the SEI thicknesses were determined to be 19 and 25 nm for the reference and PMS samples, respectively. After the initial cycling, irreversible losses shown by the PMS cells were lower than those of the reference cell. This could be attributed to a different SEI composition and lower differences in the amount of lithium between lithiated and delithiated electrodes for the PMS sample. It was suggested that PMS forms a triple-bonded radical on reduction, which further reacts with the electrolyte. The PMS additive was shown to influence the chemical composition at the positive electrode/electrolyte interface. Thicker interface layers with higher C−O and smaller LiF contributions were formed on LiFePO 4 cycled with PMS.
The role of B(CN)(4)(-) (Bison) as a component of battery electrolytes is addressed by investigating the ionic conductivity and phase behaviour of ionic liquids (ILs), ion association mechanisms, and the electrochemical stability and cycling properties of LiBison based electrochemical cells. For C(4)mpyrBison and C(2)mimBison ILs, and mixtures thereof, high ionic conductivities (3.4 ≤σ(ion)≤ 18 mS cm(-1)) are measured, which together with the glass transition temperatures (-80 ≤T(g)≤-76 °C) are found to shift systematically for most compositions. Unfortunately, poor solubility of LiBison in these ILs hinders their use as solvents for lithium salts, although good NaBison solubility offers an alternative application in Na(+) conducting electrolytes. The poor IL solubility of LiBison is predicted to be a result of a preferred monodentate ion association, according to first principles modelling, supported by Raman spectroscopy. The solubility is much improved in strongly Li(+) coordinating oligomers, for example polyethylene glycol dimethyl ether (PEGDME), with the practical performance tested in electrochemical cells. The electrolyte is found to be stable in Li/LiFePO(4) coin cells up to 4 V vs. Li and shows promising cycling performance, with a capacity retention of 99% over 22 cycles.
A family of coordination polymers formed by the reaction of copper(I) iodide with a range of angular bidentate or tridentate N-donor ligands is reported. The framework polymers [CuI(dpt)](infinity) 1 [dpt = 2,4-bis(4-pyridyl)-1,3,5-triazine], [CuI(dpb)](infinity) 2 [dpb = 1,4-bis-(4-pyridyl)-benzene], [(CuI)3(dpypy)2](infinity) 3, [CuI(dpypy)](infinity) 4 [dpypy = 3,5-bis(4-pyridyl)-pyridine], and [Cu3I3(pypm)](infinity) 5 [pypm = 5-(4-pyridyl)pyrimidine] have been prepared and structurally characterized. It was found that the angular nature of the dpypy and dpt ligands favors the formation of discrete (CuI)2 dimeric subunits as observed in [CuI(dpt).MeCN](infinity) 1 and [(CuI)3(dpypy)2](infinity) 3. In contrast, reaction with the linear ligand dpb affords [CuI(dpb)](infinity) 2 which incorporates a one-dimensional (CuI)(infinity) chain structure. Moreover, the additional donor available on the central ring of the dpypy ligand generates a novel two-dimensional bilayer structure in 3, in contrast to the one-dimensional ribbon structure observed in the case of 1. Interestingly, the bilayer structure of 3 additionally exhibits 2-fold interpenetration. The reaction of CuI with dpypy produces not only 3 but a further product [CuI(dpypy)](infinity) 4 that has been characterized as a one-dimensional chain constructed from trigonal-planar Cu(I) centers bridged by bidentate dpypy ligands. Compound 5, [Cu3I3(pypm)](infinity), exhibits a highly unusual three-dimensional structure in which the pypm ligand bridges two-dimensional brick-wall (CuI)(infinity) sheets.
In the title compound, C18H12O6·4H2O, the 2,3,6,7,10,11‐hexahydroxytriphenylene molecule is located on a twofold axis and two water molecules occupy general positions. The compound forms (4,4) two‐dimensional nets via hydrogen bonds between neighbouring hexahydroxytriphenylene molecules, somewhat similar to the cyclopentanone solvates but distinctively different from the monohydrate form. Hydrogen bonds to water molecules connect these layers to form a complicated three‐dimensional net, supported also by strong π–π stacking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.