This work presents a priori and a posteriori error analyses of a new multiscale hybridmixed method (MHM) for an elliptic model. Specially designed to incorporate multiple scales into the construction of basis functions, this finite element method relaxes the continuity of the primal variable through the action of Lagrange multipliers, while assuring the strong continuity of the normal component of the flux (dual variable). As a result, the dual variable, which stems from a simple postprocessing of the primal variable, preserves local conservation. We prove existence and uniqueness of a solution for the MHM method as well as optimal convergence estimates of any order in the natural norms. Also, we propose a face-residual a posteriori error estimator, and prove that it controls the error of both variables in the natural norms. Several numerical tests assess the theoretical results.
Abstract. In this paper we propose a novel way, via finite elements to treat problems that can be singular perturbed, a reaction-diffusion equation in our case. We enrich the usual piecewise linear or bilinear finite element trial spaces with local solutions of the original problem, as in the Residual Free Bubble (RFB) setting, but do not require these functions to vanish on each element edge, a departure from the RFB paradigm. Such multiscale functions have an analytic expression, for triangles and rectangles. Bubbles are the choice for the test functions allowing static condensation, thus our method is of Petrov-Galerkin type. We perform several numerical validations which confirm the good performance of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.