A microseed-matrix procedure has been established with the aim of influencing the nucleation event in standard crystallization screens. The method is based on the original description of matrix seeding described by Ireton & Stoddard (2004, Acta Cryst. D60, 601-605). Seed stocks are produced using a simple "seed-bead" method. The protein, reservoir solutions and seed stocks are pipetted simultaneously using a three-bore dispensing tip in drops of 0.6 microl total volume. The number and type of hits produced with the proteins tested in this study has been increased and it is believed that this method could be generally applicable to proteins where little or no nucleation is normally observed.
The formation of the CBM (CARD11-BCL10-MALT1) complex is pivotal for antigen-receptor-mediated activation of the transcription factor NF-κB. Signaling is dependent on MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1), which not only acts as a scaffolding protein but also possesses proteolytic activity mediated by its caspase-like domain. It remained unclear how the CBM activates MALT1. Here, we provide biochemical and structural evidence that MALT1 activation is dependent on its dimerization and show that mutations at the dimer interface abrogate activity in cells. The unliganded protease presents itself in a dimeric yet inactive state and undergoes substantial conformational changes upon substrate binding. These structural changes also affect the conformation of the C-terminal Ig-like domain, a domain that is required for MALT1 activity. Binding to the active site is coupled to a relative movement of caspase and Ig-like domains. MALT1 binding partners thus may have the potential of tuning MALT1 protease activity without binding directly to the caspase domain.
A large unmet medical need exists for safer antithrombotic drugs because all currently approved anticoagulant agents interfere with hemostasis, leading to an increased risk of bleeding. Genetic and pharmacologic evidence in humans and animals suggests that reducing factor XI (FXI) levels has the potential to effectively prevent and treat thrombosis with a minimal risk of bleeding. We generated a fully human antibody (MAA868) that binds the catalytic domain of both FXI (zymogen) and activated FXI. Our structural studies show that MAA868 traps FXI and activated FXI in an inactive, zymogen-like conformation, explaining its equally high binding affinity for both forms of the enzyme. This binding mode allows the enzyme to be neutralized before entering the coagulation process, revealing a particularly attractive anticoagulant profile of the antibody. MAA868 exhibited favorable anticoagulant activity in mice with a dose-dependent protection from carotid occlusion in a ferric chloride–induced thrombosis model. MAA868 also caused robust and sustained anticoagulant activity in cynomolgus monkeys as assessed by activated partial thromboplastin time without any evidence of bleeding. Based on these preclinical findings, we conducted a first-in-human study in healthy subjects and showed that single subcutaneous doses of MAA868 were safe and well tolerated. MAA868 resulted in dose- and time-dependent robust and sustained prolongation of activated partial thromboplastin time and FXI suppression for up to 4 weeks or longer, supporting further clinical investigation as a potential once-monthly subcutaneous anticoagulant therapy.
Hepatitis C virus (HCV) infection is a global health burden with over 170 million people infected worldwide. In a significant portion of patients chronic hepatitis C infection leads to serious liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma. The HCV NS3 protein is essential for viral polyprotein processing and RNA replication and hence viral replication. It is composed of an N-terminal serine protease domain and a C-terminal helicase/NTPase domain. For full activity, the protease requires the NS4A protein as a cofactor. HCV NS3/4A protease is a prime target for developing direct-acting antiviral agents. First-generation NS3/4A protease inhibitors have recently been introduced into clinical practice, markedly changing HCV treatment options. To date, crystal structures of HCV NS3/4A protease inhibitors have only been reported in complex with the protease domain alone. Here, we present a unique structure of an inhibitor bound to the full-length, bifunctional protease-helicase NS3/4A and show that parts of the P4 capping and P2 moieties of the inhibitor interact with both protease and helicase residues. The structure sheds light on inhibitor binding to the more physiologically relevant form of the enzyme and supports exploring inhibitor-helicase interactions in the design of the next generation of HCV NS3/4A protease inhibitors. In addition, small angle X-ray scattering confirmed the observed proteasehelicase domain assembly in solution.structure-based drug design | X-ray structure | solution scattering | medicinal chemistry C hronic hepatitis C virus (HCV) infection affects more than 3% of the world's population and is a leading cause of chronic liver diseases (1). Therapeutic options have been suboptimal, especially for HCV genotype 1, the most prevalent genotype in developed countries. Recently, the addition of direct-acting antiviral agents (DAAs) to the previous standard of care (combination therapy with pegylated interferon and ribavirin) have demonstrated considerable improvement in sustained virological response rates in patients infected with HCV genotype 1 (2). With the first DAAs now having been introduced into clinical practice, it is to be expected that in the near future standard therapy will change to a triple therapy including an HCV NS3/4A protease inhibitor in combination with pegylated interferon and ribavirin.The positive-strand RNA genome of HCV encodes a polyprotein precursor, which is proteolytically processed by host and viral proteases into 10 individual structural and nonstructural (NS) proteins. The viral NS3 protease in complex with the cofactor NS4A cleaves the polyprotein at four junctions releasing the NS proteins 4A, 4B, 5A, and 5B, and therefore is essential for viral replication (3, 4). A central, hydrophobic 14-mer peptide of the 54-residue NS4A, comprising residues 21-32, is necessary and sufficient for maximal activation in vitro (5). NS3/4A has also been shown to cleave cellular proteins leading to inhibition of interferon production, thereby impairin...
Sacubitril is an ethyl ester prodrug of LBQ657, the active neprilysin (NEP) inhibitor, and a component of LCZ696 (sacubitril/valsartan). We report herein the three-dimensional structure of LBQ657 in complex with human NEP at 2 Å resolution. The crystal structure unravels the binding mode of the compound occupying the S1, S1’ and S2’ sub-pockets of the active site, consistent with a competitive inhibition mode. An induced fit conformational change upon binding of the P1’-biphenyl moiety of the inhibitor suggests an explanation for its selectivity against structurally homologous zinc metallopeptidases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.