Detailed analysis of animal energy budgets requires information on the cost of digestion (specific dynamic action [SDA]), which can represent a significant proportion of ingested energy (up to 30% in infrequent feeders). We studied the effects of snake mass, temperature (25 degrees and 30 degrees C), fasting time (1 and 5 mo), and prey size (10%-50% of snake mass) on SDA in 26 timber rattlesnakes (Crotalus horridus). We used flow-through respirometry to measure hourly CO(2) production rates (VCO2) for 1 d before and up to 17 d after feeding. Crotalus horridus, like previously studied viperids and boids, show large and ecologically relevant increases in metabolism due to feeding. Depending on treatment and individual, VCO2 increased to 2.8-11.8 times the resting metabolic rate within 12-45 h postfeeding and decreased to baseline within 4.3-15.4 d. Significant effects of snake mass, meal mass, and fast length were detected. Increased temperature decreased the time required to complete the process but had little effect on total energy expended on SDA. Energy expended on SDA increased with increasing fast length, snake mass, and prey mass. Considering all of our data, we found that a simple allometric relationship explained 96.7% of the variation in total CO(2) production during SDA. Calculations suggest that energy devoted to SDA may approach 20% of the total annual energy budget of snakes in nature. Discrepancies between our data and some previous studies draw attention to the fact that the measurement, expression, and analysis of SDA may be sensitive to several methodological and statistical assumptions.
To understand the bioenergetic fluxes of free-ranging timber rattlesnakes (Crotalus horridus) better, we measured CO(2) production rate of 83 snakes in response to body mass, body temperature, time of day, sex, and geographic locality (northwest Arkansas and coastal Virginia). Effects of body mass, temperature, time of day, and the temperature-by-time interaction were remarkably similar to effects reported for other rattlesnakes. We noted that C. horridus has relatively high, but precedented, Q(10) (3.71-4.78); however, the adaptive significance of this observation, if any, remains obscure. Once the confounding effect of body mass was statistically adjusted, C. horridus exhibited no sex-specific effects; however, there was a significant locality-by-time effect, which is of equivocal biological significance. In contrast to the findings of a recent review on cost of growth in neonatal reptiles, C. horridus neonates exhibited metabolic rates that were from 200% to 400% greater than expectations from the mass scaling of yearlings and older animals. We interpreted this as evidence for a cost of synthesis in growing neonates. We report regression equations for the estimation of resting CO(2) production rate in C. horridus as a function of body mass, body temperature, and time of day. Our data contribute to a growing, comparative database documenting rattlesnakes as low-energy specialists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.