The hemostatic system is assumed to be similar in children and adults and reference ranges established for adults are commonly used to evaluate children suspected of having congenital or acquired hemostatic problems. However, we know that the hemostatic system is not fully mature by 6 months of age and comprehensive studies of healthy older children have not been published. Therefore, we conducted a prospective cohort study of the hemostatic system in healthy children having minor, elective day surgery. After obtaining informed consent, a 3-mL blood sample was obtained at the time routine preoperative blood work was drawn. The plasma was fractioned and stored at -70 degrees C for batch assaying. We measured the concentration of 33 components of the hemostatic system (functional and immunologic assays) and the bleeding time (automated pediatric device) in 246 children aged 1 to 16 inclusive (a minimum of four subjects at each age). Eleven components of hemostasis (fibrinogen, prekallikrein, high-molecular weight kininogen, factors VIII and XIII, antithrombin III [ATIII], heparin cofactor II [HCII], alpha 1-antitrypsin [alpha 1AT], protein S, plasminogen, alpha 2-antiplasmin [alpha 2AP]) had mean values and ranges of normal that were similar to adults. Mean values of seven coagulants (II, V, VII, IX, X, XI, XII) were significantly lower than adult values and varied with age. Values for three inhibitors, alpha 2- macroglobulin (alpha 2M), protein C, and protein C1-inhibitor (C1-Inh) also differed from adults. Alpha 2M and C1-Inh inhibitor levels were elevated throughout childhood, whereas protein C levels were low, with a lower limit of normal of 0.40 U/mL until the age of 11. Finally, the upper limit of normal for the bleeding time was longer in children during the first 10 years of life, but decreased to adult values in the teenage years. In summary, there are important physiologic differences in the hemostatic system in children compared with adults. The decreased levels of several critical coagulants and increased levels of alpha 2M may contribute in part to the lower risk of thrombotic events in childhood. Age-matched controls should be used for evaluation of the hemostatic system in children with suspected congenital or acquired defects.
Heparin catalyses the inhibition of two key enzymes of blood coagulation, namely Factor Xa and thrombin, by enhancing the antiproteinase activities of plasma antithrombin III and heparin cofactor II. In addition, heparin can directly inhibit the activation of Factor X and prothrombin. The contributions of each of these effects to the anticoagulant activity of heparin have not been delineated. We therefore performed experiments to assess how each of these effects of heparin contributes to its anticoagulant activity by comparing the effects of heparin, pentosan polysulphate and D-Phe-Pro-Arg-CH2Cl on the intrinsic pathway of coagulation. Unlike heparin, pentosan polysulphate catalyses only the inhibition of thrombin by plasma. D-Phe-Pro-Arg-CH2Cl is rapid enough an inhibitor of thrombin so that when added to plasma no complexes of thrombin with its inhibitors are formed, whether or not the plasma also contains heparin. Heparin (0.66 microgram/ml) and pentosan polysulphate (6.6 micrograms/ml) completely inhibited the intrinsic-pathway activation of 125I-prothrombin to 125I-prothrombin fragment 1 + 2 and 125I-thrombin. On the addition of thrombin, a good Factor V activator, to the plasma before each sulphated polysaccharide, the inhibition of prothrombin activation was demonstrable only in the presence of higher concentrations of the sulphated polysaccharide. D-Phe-Pro-Arg-CH2Cl also completely inhibited the intrinsic-pathway activation of prothrombin in normal plasma. The inhibitory effect of D-Phe-Pro-Arg-CH2Cl was reversed if thrombin was added to the plasma before D-Phe-Pro-Arg-CH2Cl. The inhibition of the activation of prothrombin by the three agents was also abolished with longer times with re-added Ca2+. Reversal of the inhibitory effects of heparin and pentosan polysulphate was associated with the accelerated formation of 125I-thrombin-antithrombin III and 125I-thrombin-heparin cofactor complexes respectively. These results suggest that the anticoagulant effects of heparin and pentosan polysulphate are mediated primarily by their ability to inhibit the thrombin-dependent activation of Factor V, thereby inhibiting the formation of prothrombinase complex, the physiological activator of prothrombin.
A variety of plasma-derived (pd) and recombinant (r) factor VIII (FVIII) concentrates are used to prevent and treat bleeding in severe hemophilia A patients. A significant side effect of FVIII replacement is the development of FVIII neutralizing antibodies (inhibitors) in up to 30% of patients receiving FVIII concentrates. The FVIII protein content (FVIII:Ag) per unit of FVIII:C in FVIII concentrates, and how effectively the FVIII:Ag in FVIII concentrates binds to von Willebrand factor (VWF) may provide information relevant for the survival of FVIII:C in vivo and for estimating the risk for inhibitor development. The FVIII:Ag content of nine r-FVIII and nine pd-FVIII concentrates were quantified in this study using two enzyme-linked immunosorbent assay (ELISA) platforms. The two ELISA platforms were based on the use of a monoclonal anti-(FVIII light chain)-IgG and polyclonal anti-FVIII antibodies as capture antibodies and both ELISAs were equally able to detect > or =0.005 IU of FVIII:Ag. Measured in international units, the r-FVIII concentrates contained significantly higher FVIII:Ag per unit of FVIII:C than the pd-FVIII concentrates. The VWF-binding profiles of the r-FVIII and pd-FVIII concentrates were also determined by gel filtration chromatography. Unlike the plasma-derived products, the r-FVIII concentrates invariably contained a fraction of FVIII:Ag molecules (approximately 20%) which was unable to associate with VWF. Given that VWF regulates both factor VIII proteolysis and survival of FVIII:Ag in vivo, the fraction of FVIII:Ag unable to bind to VWF may have a reduced survival and be more susceptible to proteolytic degradation in vivo. The extent to which the fractions of FVIII:Ag in concentrates able and unable to bind to VWF contribute to inhibitor development in severe FVIII-deficient patients is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.