Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPS state without a requirement for exogenous transcription factors. This miRNA-based reprogramming approach is two orders of magnitude more efficient than standard Oct4/Sox2/Klf4/Myc-mediated methods. Mouse and human miR302/367 iPS cells display similar characteristics to Oct4/Sox2/Klf4/Myc-iPS cells, including pluripotency marker expression, teratoma formation, and, for mouse cells, chimera contribution and germline contribution. We found that miR367 expression is required for miR302/367-mediated reprogramming and activates Oct4 gene expression, and that suppression of Hdac2 is also required. Thus, our data show that miRNA and Hdac-mediated pathways can co-operate in a powerful way to reprogram somatic cells to pluripotency.
SUMMARY p53 is well known for its tumor suppressor role, but this protein also has a poorly understood role in the regulation of metabolism. Human studies have implicated a common polymorphism at codon 72 of p53 in diabetic and pre-diabetic phenotypes. To understand this role, we utilized a humanized mouse model of the p53 codon 72 variants and monitored these mice following challenge with a high fat diet (HFD). Mice with the arginine 72 (R72) variant of p53 developed more severe obesity and glucose intolerance on a HFD, compared to mice with the proline 72 variant (P72). R72 mice developed insulin resistance, islet hypertrophy, increased infiltration of immune cells, and fatty liver disease. Gene expression analyses and studies with small molecule inhibitors indicate that the p53 target genes Tnf and Npc1l1 underlie this phenotype. These results shed light on the role of p53 in obesity, metabolism and inflammation.
Objective To examine associations of molecular markers of brain insulin signaling with Alzheimer disease (AD) and cognition among older persons with or without diabetes. Methods This clinical–pathologic study was derived from a community‐based cohort study, the Religious Orders Study. We studied 150 individuals (mean age at death =87 years, 48% women): 75 with and 75 without diabetes (matched by sex on age at death and education). Using enzyme‐linked immunosorbent assay, immunohistochemistry, and ex vivo stimulation of brain tissue with insulin, we assessed insulin signaling in the postmortem middle frontal gyrus cortex. Postmortem data documented AD neuropathology. Clinical evaluations documented cognitive function proximate to death, based on 17 neuropsychological tests. In adjusted regression analyses, we examined associations of brain insulin signaling with diabetes, AD, and level of cognition. Results Brain insulin receptor substrate‐1 (IRS1) phosphorylation (pS307IRS1/total IRS1) and serine/threonine‐protein kinase (AKT) phosphorylation (pT308AKT1/total AKT1) were similar in persons with or without diabetes. AKT phosphorylation was associated with the global AD pathology score (p = 0.001). In contrast, IRS1 phosphorylation was not associated with AD (p = 0.536). No other associations of insulin signaling were found with the global AD score, including when using the ex vivo brain insulin stimulation method. In secondary analyses, normalized pT308AKT1 was positively correlated with both the amyloid burden and tau tangle density, and no other associations of brain insulin signaling with neuropathology were observed. Moreover, normalized pT308AKT1 was associated with a lower level of global cognitive function (estimate = −0.212, standard error = 0.097; p = 0.031). Interpretation Brain AKT phosphorylation, a critical node in the signaling of insulin and other growth factors, is associated with AD neuropathology and lower cognitive function. ANN NEUROL 2020;88:513–525
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.