Woodland encroachment on United States rangelands has altered the structure and function of shrub steppe ecosystems. The potential community structure is one where trees dominate, shrub and herbaceous species decline, and rock cover and bare soil area increase and become more interconnected. Research from the Desert Southwest United States has demonstrated areas under tree canopies effectively store water and soil resources, whereas areas between canopies (intercanopy) generate significantly more runoff and erosion. We investigated these relationships and the impacts of tree encroachment on runoff and erosion processes at two woodland sites in the Intermountain West, USA. Rainfall simulation and concentrated flow methodologies were employed to measure infiltration, runoff, and erosion from intercanopy and canopy areas at small-plot (0.5 m 2) and large-plot (13 m 2) scales. Soil water repellency and vegetative and ground cover factors that influence runoff and erosion were quantified. Runoff and erosion from rainsplash, sheet flow, and concentrated flow processes were significantly greater from intercanopy than canopy areas across small-and large-plot scales, and site-specific erodibility differences were observed. Runoff and erosion were primarily dictated by the type and quantity of ground cover. Litter offered protection from rainsplash effects, provided rainfall storage, mitigated soil water repellency impacts on infiltration, and contributed to aggregate stability. Runoff and erosion increased exponentially (r 2 5 0.75 and 0.64) where bare soil and rock cover exceeded 50%. Sediment yield was strongly correlated (r 2 5 0.87) with runoff and increased linearly where runoff exceeded 20 mm?h 21. Measured runoff and erosion rates suggest tree canopies represent areas of hydrologic stability, whereas intercanopy areas are vulnerable to runoff and erosion. Results indicate the overall hydrologic vulnerability of sagebrush steppe following woodland encroachment depends on the potential influence of tree dominance on bare intercanopy expanse and connectivity and the potential erodibility of intercanopy areas. This is Contribution Number 15 of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), funded by the US Joint Fire Science Program. Mention of a proprietary product does not constitute endorsement by USDA and does not imply its approval to the exclusion of the other products that may also be suitable.
This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site's resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.
Woody plant encroachment on water-limited lands can induce a shift from biotic (plant)-controlled resource retention to abiotic (physical)-driven losses of critical soil resources. The biotic-to-abiotic shift occurs where encroachment propagates connectivity of runoff processes and amplified cross-scale erosion that, in-turn, promote ecohydrologic resilience of the post-encroachment community. We investigated these relationships for woodland-encroached sagebrush steppe in the Great Basin, USA, and evaluated wildfire as a mechanism to reverse the post-encroachment soil erosion feedback. We measured vegetation, soil properties, and runoff/ erosion from experimental plots on burned and unburned areas of a late-succession woodland 1 and 2 years post-fire. Our findings suggest that the biotic-to-abiotic shift and amplified cross-scale erosion occur where encroachment-induced bare ground exceeds 50-60% and bare gaps between plant bases frequently extend beyond 1 m. The trigger for amplified cross-scale erosion is formation of concentrated flow within the degraded intercanopy between trees. Burning in this study decreased ecohydrologic resilience of the latesuccession woodland through herbaceous recruitment 2 years post-fire. Increased intercanopy herbaceous productivity decreased connectivity of bare ground, improved infiltration, and reduced erosion, but the study site remained vulnerable to runoff and erosion from high-intensity rainfall. We conclude that burning can reduce woodland ecohydrologic resilience and that woodland encroachment-induced structural and functional ecohydrologic attributes may persist during high-intensity storms for an undetermined period post-fire. We cannot conclude whether wildfire reverses the woodland-induced soil erosion feedback on sagebrush rangelands. However, our results suggest that wildfire may provide a restoration pathway for sagebrush steppe by reducing woodland ecohydrologic resilience over time. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.