A review of the field of lightness perception from Helmholtz to the present shows the most adequate theories of lightness perception to be the intrinsic image models. Nevertheless, these models fail on 2 important counts: They contain no anchoring rule, and they fail to account for the pattern of errors in surface lightness. Recent work on both the anchoring problem and the problem of errors has produced a new model of lightness perception, one that is qualitatively different from the intrinsic image models. The new model, which is based on a combination of local and global anchoring of lightness values, appears to provide an unprecedented account of a wide range of empirical results, both classical and recent, especially the pattern of errors. It provides a unified account of both illumination-dependent failures of constancy and background-dependent failures of constancy, resolving a number of long-standing puzzles.
Observers were presented with target surfaces of varying luminance and asked to report whether they appeared luminous or opaque. In one experiment the targets were presented against three backgrounds, white, gray, and black. In another experiment the targets were presented within Mondrian patterns that were either brightly or dimly illuminated. The results indicate that, across a variety of conditions, a target begins to appear luminous when its luminance is about 1.7 times that of a surface that would appear white in the same illumination, whether or not a white surface is available in the visual field for comparison. Defined in this way the luminosity threshold exhibits the two main kinds of constancy characteristic of surface grays, constancy with respect to changes in the illumination level and constancy with respect to changes in the reflectance of the immediate background. This finding, while challenging a range of potential rules, places the problem of defining the conditions that produce luminosity squarely within the problem of lightness perception for opaque surfaces.
Sensory conflict has been used to explain the way we perceive and control our self-motion, as well as the aetiology of motion sickness. However, recent research on simulated viewpoint jitter provides a strong challenge to one core prediction of these theories -that increasing sensory conflict should always impair visually induced illusions of self-motion (known as vection). These studies show that jittering self-motion displays (thought to generate significant and sustained visual-vestibular conflict) actually induce superior vection to comparable non-jittering displays (thought to generate only minimal/transient sensory conflict). Here we review viewpoint jitter effects on vection, postural sway, eye-movements and motion sickness, and relate them to recent behavioural and neurophysiological findings. It is shown that jitter research provides important insights into the role that sensory interaction plays in self-motion perception. Abstract Sensory conflict has been used to explain the way we perceive and control our self-motion, as well as the aetiology of motion sickness. However, recent research on simulated viewpoint jitter provides a strong challenge to one core prediction of these theories -that increasing sensory conflict should always impair visually induced illusions of self-motion (known as vection). These studies show that jittering self-motion displays (thought to generate significant and sustained visual-vestibular conflict) actually induce superior vection to comparable non-jittering displays (thought to generate only minimal/transient sensory conflict).Here we review viewpoint jitter effects on vection, postural sway, eye-movements and motion sickness, and relate them to recent behavioural and neurophysiological findings. It is shown that jitter research provides important insights into the role that sensory interaction plays in self-motion perception.
When stationary observers view an optic-flow pattern, visually induced self-motion perception (vection) and a form of motion sickness known as simulator sickness (SS), can result. Previous results suggest that an expanding flow pattern leads to more SS than a contracting pattern. Sensory conflict, a possible cause of SS, may be more salient when an expanding optic-flow pattern is viewed. An experiment was conducted to test if a more salient sensory conflict accompanying expanding flow patterns might inhibit vection. Participants (n = 15) viewed a pattern of blue squares, either steadily expanded or contracted, on a large rear-projection screen. Vection onset and magnitude were measured for 30 s with a computer-interfaced slide device. Vection onset was significantly faster, and vection magnitude stronger, when a contracting pattern was viewed. We propose that our extensive experience with forward self-motion may form a neural expectancy (exposure-history) about the sensory inputs which typically accompany expanding flow. However, since backward self-motion is less common, there may be a weaker exposure-history for contracting flow, and as a result these patterns generate less salient sensory conflict and subsequently less vection.
The optic flow patterns generated by virtual reality (VR) systems typically produce visually induced experiences of self-motion (vection). While this vection can enhance presence in VR, it is often accompanied by a variant of motion sickness called simulator sickness (SS). However, not all vection experiences are the same. In terms of perceived heading and/or speed, visually simulated self-motion can be either steady or changing. It was hypothesized that changing vection would lead to more SS. Participants viewed an optic flow pattern that either steadily expanded or alternately expanded and contracted. In one experiment, SS was measured pretreatment and after 5 min of viewing using the Simulator Sickness Questionnaire. In a second experiment employing the same stimuli, vection onset and magnitude were measured using a computer-interfaced slide indicator. The steadily expanding flow pattern, compared to the expanding and contracting pattern, led to: 1) significantly less SS, 2) lower subscores for nausea, oculomotor, and disorientation symptoms, 3) more overall vection magnitude, and 4) less changing vection. Collectively, these results suggest that changing vection exacerbates SS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.